[Ipopt] optimization with experimental data
pierre-lin.pommier at fr.michelin.com
pierre-lin.pommier at fr.michelin.com
Tue Jun 15 04:23:31 EDT 2010
Hello,
I'm looking for to solve an optimization problem. I have some experimental
data and I want to minimize the difference (L2-norm) between the model and
the measures.
I have some difficulties to link Ipopt solver : how can I take into
account these experimental data in functions "eval_f", "eval_grad_f",
"eval_g", "eval_jac_g" and "eval_h" ?
You gave an example to minimize a function without experimental data.
For instance, if my function is
y(p1, p2, x) = p1 * exp(p2 * x)
where p1 and p2 are my 2 parameters, x is my variable (the temperature for
instance). So at each componant of x, called x_i, I must have a new point
y(p1, p2, x_i)
the jacobian of my function is
exp(p2 * x)
p2 * p1 * exp(p2 * x)
for each x.
How can I program functions "eval_f", "eval_grad_f", "eval_g",
"eval_jac_g" and "eval_h" ?
Thank you very much.
Sincerly,
Pierre-Lin Pommier
_______________________________________________________
Pierre-Lin POMMIER
Manufacture Française des Pneumatiques Michelin
CTE/DTO/SIM/ET CER Ladoux - Bâtiment F32 ? 2ème étage
23 place des Carmes-Dechaux 63040 Clermont-Ferrand Cedex 9
Tel int : 67 194 Fax int : 68 541
Tel ext : (+33) (0)4 73 10 71 94 Fax ext : (+33) (0)4 73 10 85 41
mail : pierre-lin.pommier at fr.michelin.com
Confidentialité D3
_______________________________________________________
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://list.coin-or.org/pipermail/ipopt/attachments/20100615/cdcfa62f/attachment.html
More information about the Ipopt
mailing list