[Coin-osi-devel] **SPAM** Spec for row/column name handling, with first cut at code.

Lou Hafer lou at cs.sfu.ca
Wed Feb 7 23:29:53 EST 2007


Folks,

	Here's the first cut:  basic functionality to manipulate row and column
names.  I've attached three files:

  * OsiSolverParameters.hpp contains the OsiNameDiscipline integer parameter.
  * OsiSolverInterface.hpp contains declarations and doxygen doc'n
  * OsiNames.cpp contains the first cut at implementation

In OsiSolverParameters.hpp and OsiSolverInterface.hpp, look for OSI_KEEP_NAMES
to find the relevant portions.  This is all untested and surely chock ablock
with bugs, but it should (mostly :-) satisfy Matt's request for a complete spec.
Tweaking, for sure --- for one thing, I havn't gone through and attached const
qualifiers in places that probably should have them.

I haven't attached the modified OsiSolverInterface.cpp, but the changes are easy
to summarise:  add calls to setRowColNames in readMps, readGMPL, readLp, and
loadFromCoinModel.  As the comments point out, when a OsiXXX interface overrides
any of these methods, they'll need to be sure to add the call to setRowColNames.
Where people are adding rows/columns individually, or using one of the
loadProblem variants, they can make explicit calls to add names.  To do
otherwise gets into serious ugliness, as the functions in question are pure
virtual.

	I haven't addressed Ted's request for name lookup. I'll poke at that 
next. Nor has there been any reply to the issue of error handling. In the 
absence of opinions, I'll go with asserts guarded by COIN_OSI_CHECKLEVEL.
	
	Have at it  :-)
	
							Lou
-------------- next part --------------
// Copyright (C) 2000, International Business Machines
// Corporation and others.  All Rights Reserved.

#ifndef OsiSolverParameters_H
#define OsiSolverParameters_H

#define OSI_KEEP_NAMES 1

enum OsiIntParam {
  /** The maximum number of iterations (whatever that means for the given
      solver) the solver can execute in the OsiSolverinterface::initialSolve()
      and the OsiSolverinterface::resolve() methods before terminating. */
  OsiMaxNumIteration = 0,
  /** The maximum number of iterations (whatever that means for the given
      solver) the solver can execute in the
      OsiSolverinterface::solveFromHotStart() method before terminating. */
  OsiMaxNumIterationHotStart,
#if OSI_KEEP_NAMES > 0
  /** The name discipline; specifies how the solver will handle row and
      column names.
    - 0: No names: Names cannot be set by the client. Names of the form
	 rowNNN or colNNN are generated dynamically when a name for a
	 specific row or column is requested. Requests for a vector of names
	 return a vector with 0 entries.
    - 1: Lazy names: Names supplied by the client are retained. Names of the
	 form rowNNN or colNNN are generated on demand if no name has been
	 supplied by the client. Requests for a vector of names return a
	 vector sized to the largest index of a name supplied by the client;
	 some entries in the vector may be strings of length 0.
    - 2: All names: Names supplied by the client are retained. Names of the
	 form rowNNN or colNNN are generated on demand if no name has been
	 supplied by the client. Requests for a vector of names return a
	 vector sized to match the constraint system, and all entries will
	 contain either the name specified by the client or a generated name.
  */
  OsiNameDiscipline,
#endif
  /** Just a marker, so that OsiSolverInterface can allocate a static sized
      array to store parameters. */
  OsiLastIntParam
};

enum OsiDblParam {
  /** Set Dual objective limit. This is to be used as a termination
      criteria in methods where the dual objective monotonically changes
      (e.g., dual simplex, the volume algorithm) */
  OsiDualObjectiveLimit = 0,
  /** Primal objective limit. This is to be used as a termination
      criteria in methods where the primal objective monotonically changes
      (e.g., primal simplex) */
  OsiPrimalObjectiveLimit,
  /** The maximum amount the dual constraints can be violated and still be
      considered feasible. */
  OsiDualTolerance,
  /** The maximum amount the primal constraints can be violated and still be
      considered feasible. */
  OsiPrimalTolerance,
  /** Objective function constant. This the value of the constant term in
      the objective function. */
  OsiObjOffset,
  /** Just a marker, so that OsiSolverInterface can allocate a static sized
      array to store parameters. */
  OsiLastDblParam
};


enum OsiStrParam {
  /** Name of the problem. This is the found on the Name card of
      an mps file. */
  OsiProbName = 0,
  /** Name of the solver. This parameter is not settable. */
  OsiSolverName,
  /** Just a marker, so that OsiSolverInterface can allocate a static sized
      array to store parameters. */
  OsiLastStrParam
};

enum OsiHintParam {
  /** Whether to do a presolve in initialSolve */
  OsiDoPresolveInInitial = 0,
  /** Whether to use a dual algorithm in initialSolve.
      The reverse is to use a primal algorithm */
  OsiDoDualInInitial,
  /** Whether to do a presolve in resolve */
  OsiDoPresolveInResolve,
  /** Whether to use a dual algorithm in resolve.
      The reverse is to use a primal algorithm */
  OsiDoDualInResolve,
  /** Whether to scale problem */
  OsiDoScale,
  /** Whether to create a non-slack basis (only in initialSolve) */
  OsiDoCrash,
  /** Whether to reduce amount of printout, e.g., for branch and cut */
  OsiDoReducePrint,
  /** Whether we are in branch and cut - so can modify behavior */
  OsiDoInBranchAndCut,
  /** Just a marker, so that OsiSolverInterface can allocate a static sized
      array to store parameters. */
  OsiLastHintParam
};

enum OsiHintStrength {
  /** Ignore hint (default) */
  OsiHintIgnore = 0,
  /** This means it is only a hint */
  OsiHintTry,
  /** This means do hint if at all possible */
  OsiHintDo,
  /** And this means throw an exception if not possible */
  OsiForceDo
};

#endif
-------------- next part --------------
// Copyright (C) 2000, International Business Machines
// Corporation and others.  All Rights Reserved.
#ifndef OsiSolverInterface_H
#define OsiSolverInterface_H

#define OSI_KEEP_NAMES 1

#include <string>
#include <vector>

#include "CoinMessageHandler.hpp"
#include "CoinPackedVectorBase.hpp"

#include "OsiCollections.hpp"
#include "OsiSolverParameters.hpp"

class CoinPackedMatrix;
class CoinWarmStart;
class CoinSnapshot;
class CoinLpIO;
class CoinMpsIO;

class OsiCuts;
class OsiAuxInfo;
class OsiRowCut;
class OsiRowCutDebugger;
class CoinSet;
class CoinBuild;
class CoinModel;
class OsiSolverBranch;
class OsiSolverResult;
class OsiObject;
#include "CoinFinite.hpp"


//#############################################################################

/** Solver Interface Abstract Base Class

  Abstract Base Class for describing an interface to a solver.

  Many OsiSolverInterface query methods return a const pointer to the
  requested read-only data. If the model data is changed or the solver
  is called, these pointers may no longer be valid and should be 
  refreshed by invoking the member function to obtain an updated copy
  of the pointer.
  For example:
  \code
      OsiSolverInterface solverInterfacePtr ;
      const double * ruBnds = solverInterfacePtr->getRowUpper();
      solverInterfacePtr->applyCuts(someSetOfCuts);
      // ruBnds is no longer a valid pointer and must be refreshed
      ruBnds = solverInterfacePtr->getRowUpper();
  \endcode

  Querying a problem that has no data associated with it will result in
  zeros for the number of rows and columns, and NULL pointers from
  the methods that return vectors.
*/

class OsiSolverInterface  {
   friend void OsiSolverInterfaceCommonUnitTest(
      const OsiSolverInterface* emptySi,
      const std::string & mpsDir,
      const std::string & netlibDir);
   friend void OsiSolverInterfaceMpsUnitTest(
      const std::vector<OsiSolverInterface*> & vecSiP,
      const std::string & mpsDir);

public:
  /// Internal class for obtaining status from the applyCuts method 
  class ApplyCutsReturnCode {
    friend class OsiSolverInterface;
    friend class OsiOslSolverInterface;

  public:
    ///@name Constructors and desctructors
    //@{
      /// Default constructor
      ApplyCutsReturnCode():
	 intInconsistent_(0),
	 extInconsistent_(0),
	 infeasible_(0),
	 ineffective_(0),
	 applied_(0) {} 
      /// Copy constructor
      ApplyCutsReturnCode(const ApplyCutsReturnCode & rhs):
	 intInconsistent_(rhs.intInconsistent_),
	 extInconsistent_(rhs.extInconsistent_),
	 infeasible_(rhs.infeasible_),
	 ineffective_(rhs.ineffective_),
	 applied_(rhs.applied_) {} 
      /// Assignment operator
      ApplyCutsReturnCode & operator=(const ApplyCutsReturnCode& rhs)
      { 
	if (this != &rhs) { 
	  intInconsistent_ = rhs.intInconsistent_;
	  extInconsistent_ = rhs.extInconsistent_;
	  infeasible_      = rhs.infeasible_;
	  ineffective_     = rhs.ineffective_;
	  applied_         = rhs.applied_;
	}
	return *this;
      }
      /// Destructor
      ~ApplyCutsReturnCode(){}
    //@}

    /**@name Accessing return code attributes */
    //@{
      /// Number of logically inconsistent cuts
      inline int getNumInconsistent(){return intInconsistent_;}
      /// Number of cuts inconsistent with the current model
      inline int getNumInconsistentWrtIntegerModel(){return extInconsistent_;}
      /// Number of cuts that cause obvious infeasibility
      inline int getNumInfeasible(){return infeasible_;}
      /// Number of redundant or ineffective cuts
      inline int getNumIneffective(){return ineffective_;}
      /// Number of cuts applied
      inline int getNumApplied(){return applied_;}
    //@}

  private: 
    /**@name Private methods */
    //@{
      /// Increment logically inconsistent cut counter 
      inline void incrementInternallyInconsistent(){intInconsistent_++;}
      /// Increment model-inconsistent counter
      inline void incrementExternallyInconsistent(){extInconsistent_++;}
      /// Increment infeasible cut counter
      inline void incrementInfeasible(){infeasible_++;}
      /// Increment ineffective cut counter
      inline void incrementIneffective(){ineffective_++;}
      /// Increment applied cut counter
      inline void incrementApplied(){applied_++;}
    //@}

    ///@name Private member data
    //@{
      /// Counter for logically inconsistent cuts
      int intInconsistent_;
      /// Counter for model-inconsistent cuts
      int extInconsistent_;
      /// Counter for infeasible cuts
      int infeasible_;
      /// Counter for ineffective cuts
      int ineffective_;
      /// Counter for applied cuts
      int applied_;
    //@}
  };

  //---------------------------------------------------------------------------

public:
  ///@name Solve methods 
  //@{
    /// Solve initial LP relaxation 
    virtual void initialSolve() = 0; 

    /// Resolve an LP relaxation after problem modification
    virtual void resolve() = 0;

    /// Invoke solver's built-in enumeration algorithm
    virtual void branchAndBound() = 0;

    /**
       Solve 2**N (N==depth) problems and return solutions and bases.
       There are N branches each of which changes bounds on both sides
       as given by branch.  The user should provide an array of (empty)
       results which will be filled in.  See OsiSolveResult for more details
       (in OsiSolveBranch.?pp) but it will include a basis and primal solution.

       The order of results is left to right at feasible leaf nodes so first one
       is down, down, .....

       Returns number of feasible leaves.  Also sets number of solves done and number
       of iterations.

       This is provided so a solver can do faster.

       If forceBranch true then branch done even if satisfied
    */
#ifdef CBC_NEXT_VERSION
  virtual int solveBranches(int depth,const OsiSolverBranch * branch,
                            OsiSolverResult * result,
                            int & numberSolves, int & numberIterations,
                            bool forceBranch=false);
#endif
  //@}

  //---------------------------------------------------------------------------
  /**@name Parameter set/get methods

     The set methods return true if the parameter was set to the given value,
     false otherwise. There can be various reasons for failure: the given
     parameter is not applicable for the solver (e.g., refactorization
     frequency for the volume algorithm), the parameter is not yet implemented
     for the solver or simply the value of the parameter is out of the range
     the solver accepts. If a parameter setting call returns false check the
     details of your solver.

     The get methods return true if the given parameter is applicable for the
     solver and is implemented. In this case the value of the parameter is
     returned in the second argument. Otherwise they return false.

     \note
     There is a default implementation of the set/get
     methods, namely to store/retrieve the given value using an array in the
     base class. A specific solver implementation can use this feature, for
     example, to store parameters that should be used later on. Implementors
     of a solver interface should overload these functions to provide the
     proper interface to and accurately reflect the capabilities of a
     specific solver.

     The format for hints is slightly different in that the value is 
     boolean and there is an enum to show strength of hint.
     There is also an optional void pointer to allow for any eventuality.
     Hints should be initialised when a solver is instantiated.
     (See OsiSolverParameters.hpp for defined hint parameters and strength.)
     A value of true means to work with the hint, false to work against it.
     For example,
     <ul>
       <li> \code setHintParam(OsiDoScale,true,OsiHintTry) \endcode
	    is a mild suggestion to the solver to scale the constraint
	    system.
       <li> \code setHintParam(OsiDoScale,false,OsiForceDo) \endcode
	    tells the solver to disable scaling, or throw an exception if
	    it cannot comply.
     </ul>
     As another example, a solver interface could use the value and strength
     of the \c OsiDoReducePrint hint to adjust the amount of information
     printed by the interface and/or solver.  The extent to which a solver
     obeys hints is left to the solver.  The value and strength returned by
     \c getHintParam will match the most recent call to \c setHintParam,
     and will not necessarily reflect the solver's ability to comply with the
     hint.  If the hint strength is \c OsiForceDo, the solver is required to
     throw an exception if it cannot perform the specified action.

     \note
     As with the other set/get methods, there is a default implementation
     which maintains arrays in the base class for hint value and strength.
     The default implementation does not store the void pointer, and always
     throws an exception for strength \c OsiForceDo. Implementors of a solver
     interface should overload these functions to provide the proper interface
     to and accurately reflect the capabilities of a specific solver.
  */
  //@{
    // Set an integer parameter
    virtual bool setIntParam(OsiIntParam key, int value) {
      if (key == OsiLastIntParam) return (false) ;
      intParam_[key] = value;
      return true;
    }
    // Set an double parameter
    virtual bool setDblParam(OsiDblParam key, double value) {
      if (key == OsiLastDblParam) return (false) ;
      dblParam_[key] = value;
      return true;
    }
    // Set an string parameter
    virtual bool setStrParam(OsiStrParam key, const std::string & value) {
      if (key == OsiLastStrParam) return (false) ;
      strParam_[key] = value;
      return true;
    }
    // Set a hint parameter
    virtual bool setHintParam(OsiHintParam key, bool yesNo=true,
			      OsiHintStrength strength=OsiHintTry,
			      void * otherInformation=NULL) {
      if (key==OsiLastHintParam)
	return false; 
      hintParam_[key] = yesNo;
      hintStrength_[key] = strength;
      if (strength == OsiForceDo)
	throw CoinError("OsiForceDo illegal",
			"setHintParam", "OsiSolverInterface");
      return true;
    }
    // Get an integer parameter
    virtual bool getIntParam(OsiIntParam key, int& value) const {
      if (key == OsiLastIntParam) return (false) ;
      value = intParam_[key];
      return true;
    }
    // Get an double parameter
    virtual bool getDblParam(OsiDblParam key, double& value) const {
      if (key == OsiLastDblParam) return (false) ;
      value = dblParam_[key];
      return true;
    }
    /** We should be able to get an integer tolerance.
        Until that time just use primal tolerance
    */
    inline double getIntegerTolerance() const
    { return dblParam_[OsiPrimalTolerance];};
    // Get a string parameter
    virtual bool getStrParam(OsiStrParam key, std::string& value) const {
      if (key == OsiLastStrParam) return (false) ;
      value = strParam_[key];
      return true;
    }
    // get a hint parameter
    virtual bool getHintParam(OsiHintParam key, bool& yesNo,
			      OsiHintStrength& strength,
			      void *& otherInformation) const {
      if (key==OsiLastHintParam)
	return false; 
      yesNo = hintParam_[key];
      strength = hintStrength_[key];
      otherInformation=NULL;
      return true;
    }
    // get a hint parameter (less information)
    virtual bool getHintParam(OsiHintParam key, bool& yesNo,
			      OsiHintStrength& strength) const {
      if (key==OsiLastHintParam)
	return false; 
      yesNo = hintParam_[key];
      strength = hintStrength_[key];
      return true;
    }
    // get a hint parameter (even less information)
    virtual bool getHintParam(OsiHintParam key, bool& yesNo) const {
      if (key==OsiLastHintParam)
	return false; 
      yesNo = hintParam_[key];
      return true;
    }
    // copy all parameters in this section from one solver to another
    void copyParameters(OsiSolverInterface & rhs);
  //@}

  //---------------------------------------------------------------------------
  ///@name Methods returning info on how the solution process terminated
  //@{
    /// Are there numerical difficulties?
    virtual bool isAbandoned() const = 0;
    /// Is optimality proven?
    virtual bool isProvenOptimal() const = 0;
    /// Is primal infeasiblity proven?
    virtual bool isProvenPrimalInfeasible() const = 0;
    /// Is dual infeasiblity proven?
    virtual bool isProvenDualInfeasible() const = 0;
    /// Is the given primal objective limit reached?
    virtual bool isPrimalObjectiveLimitReached() const = 0;
    /// Is the given dual objective limit reached?
    virtual bool isDualObjectiveLimitReached() const = 0;
    /// Iteration limit reached?
    virtual bool isIterationLimitReached() const = 0;
  //@}

  //---------------------------------------------------------------------------
  /** \name Warm start methods

    Note that the warm start methods return a generic CoinWarmStart object.
    The precise characteristics of this object are solver-dependent. Clients
    who wish to maintain a maximum degree of solver independence should take
    care to avoid unnecessary assumptions about the properties of a warm start
    object.
  */
  //@{
    /*! \brief Get an empty warm start object
      
      This routine returns an empty warm start object. Its purpose is
      to provide a way for a client to acquire a warm start object of the
      appropriate type for the solver, which can then be resized and modified
      as desired.
    */

    virtual CoinWarmStart *getEmptyWarmStart () const = 0 ;

    /** \brief Get warm start information.

      Return warm start information for the current state of the solver
      interface. If there is no valid warm start information, an empty warm
      start object wil be returned.
    */
    virtual CoinWarmStart* getWarmStart() const = 0;

    /** \brief Set warm start information.
    
      Return true or false depending on whether the warm start information was
      accepted or not.
      By definition, a call to setWarmStart with an empty warm start object
      should remove the warm start information held in the solver interface.
   */
    virtual bool setWarmStart(const CoinWarmStart* warmstart) = 0;
  //@}

  //---------------------------------------------------------------------------
  /**@name Hot start methods
  
     Primarily used in strong branching. The user can create a hot start
     object --- a snapshot of the optimization process --- then reoptimize
     over and over again, starting from the same point.

     \note
     <ul>
     <li> Between hot started optimizations only bound changes are allowed.
     <li> The copy constructor and assignment operator should NOT copy any
          hot start information.
     <li> The default implementation simply extracts a warm start object in
          \c markHotStart, resets to the warm start object in
	  \c solveFromHotStart, and deletes the warm start object in
	  \c unmarkHotStart.
	  <em>Actual solver implementations are encouraged to do better.</em>
     </ul>

  */
  //@{
    /// Create a hot start snapshot of the optimization process.
    virtual void markHotStart();
    /// Optimize starting from the hot start snapshot.
    virtual void solveFromHotStart();
    /// Delete the hot start snapshot.
    virtual void unmarkHotStart();
  //@}

  //---------------------------------------------------------------------------
    /**@name Problem query methods

     Querying a problem that has no data associated with it will result in
     zeros for the number of rows and columns, and NULL pointers from
     the methods that return vectors.
     
     Const pointers returned from any data-query method are valid as
     long as the data is unchanged and the solver is not called.
    */
    //@{
      /// Get number of columns
      virtual int getNumCols() const = 0;
  
      /// Get number of rows
      virtual int getNumRows() const = 0;
  
      /// Get number of nonzero elements
      virtual int getNumElements() const = 0;

      /// Get number of integer variables
      virtual int getNumIntegers() const ;
  
      /// Get pointer to array[getNumCols()] of column lower bounds
      virtual const double * getColLower() const = 0;
  
      /// Get pointer to array[getNumCols()] of column upper bounds
      virtual const double * getColUpper() const = 0;
  
      /** Get pointer to array[getNumRows()] of row constraint senses.
  	<ul>
  	<li>'L': <= constraint
  	<li>'E': =  constraint
  	<li>'G': >= constraint
  	<li>'R': ranged constraint
  	<li>'N': free constraint
  	</ul>
      */
      virtual const char * getRowSense() const = 0;
  
      /** Get pointer to array[getNumRows()] of row right-hand sides
  	<ul>
  	  <li> if getRowSense()[i] == 'L' then
	       getRightHandSide()[i] == getRowUpper()[i]
  	  <li> if getRowSense()[i] == 'G' then
	       getRightHandSide()[i] == getRowLower()[i]
  	  <li> if getRowSense()[i] == 'R' then
	       getRightHandSide()[i] == getRowUpper()[i]
  	  <li> if getRowSense()[i] == 'N' then
	       getRightHandSide()[i] == 0.0
  	</ul>
      */
      virtual const double * getRightHandSide() const = 0;
  
      /** Get pointer to array[getNumRows()] of row ranges.
  	<ul>
            <li> if getRowSense()[i] == 'R' then
                    getRowRange()[i] == getRowUpper()[i] - getRowLower()[i]
            <li> if getRowSense()[i] != 'R' then
                    getRowRange()[i] is 0.0
          </ul>
      */
      virtual const double * getRowRange() const = 0;
  
      /// Get pointer to array[getNumRows()] of row lower bounds
      virtual const double * getRowLower() const = 0;
  
      /// Get pointer to array[getNumRows()] of row upper bounds
      virtual const double * getRowUpper() const = 0;
  
      /// Get pointer to array[getNumCols()] of objective function coefficients
      virtual const double * getObjCoefficients() const = 0;
  
      /// Get objective function sense (1 for min (default), -1 for max)
      virtual double getObjSense() const = 0;
  
      /// Return true if variable is continuous
      virtual bool isContinuous(int colIndex) const = 0;
  
      /// Return true if variable is binary
      virtual bool isBinary(int colIndex) const;
  
      /** Return true if column is integer.
          Note: This function returns true if the the column
          is binary or a general integer.
      */
      virtual bool isInteger(int colIndex) const;
  
      /// Return true if variable is general integer
      virtual bool isIntegerNonBinary(int colIndex) const;
  
      /// Return true if variable is binary and not fixed at either bound
      virtual bool isFreeBinary(int colIndex) const; 
    
      /// Get pointer to row-wise copy of matrix
      virtual const CoinPackedMatrix * getMatrixByRow() const = 0;
  
      /// Get pointer to column-wise copy of matrix
      virtual const CoinPackedMatrix * getMatrixByCol() const = 0;
  
      /// Get pointer to mutable row-wise copy of matrix (returns NULL if not meaningful)
      virtual CoinPackedMatrix * getMutableMatrixByRow() const {return NULL;};
  
      /// Get pointer to mutable column-wise copy of matrix (returns NULL if not meaningful)
      virtual CoinPackedMatrix * getMutableMatrixByCol() const {return NULL;};
  
      /// Get solver's value for infinity
      virtual double getInfinity() const = 0;
    //@}
    
    /**@name Solution query methods */
    //@{
      /// Get pointer to array[getNumCols()] of primal variable values
      virtual const double * getColSolution() const = 0;
  
      /// Get pointer to array[getNumRows()] of dual variable values
      virtual const double * getRowPrice() const = 0;
  
      /// Get a pointer to array[getNumCols()] of reduced costs
      virtual const double * getReducedCost() const = 0;
  
      /** Get pointer to array[getNumRows()] of row activity levels (constraint
  	matrix times the solution vector). */
      virtual const double * getRowActivity() const = 0;
  
      /// Get objective function value
      virtual double getObjValue() const = 0;

      /** Get the number of iterations it took to solve the problem (whatever
	  ``iteration'' means to the solver). */
      virtual int getIterationCount() const = 0;
  
      /** Get as many dual rays as the solver can provide. In case of proven
          primal infeasibility there should be at least one.
     
          \note
	  Implementors of solver interfaces note that
          the double pointers in the vector should point to arrays of length
          getNumRows() and they should be allocated via new[].
     
          \note
	  Clients of solver interfaces note that
          it is the client's responsibility to free the double pointers in the
          vector using delete[].
      */
      virtual std::vector<double*> getDualRays(int maxNumRays) const = 0;
      /** Get as many primal rays as the solver can provide. (In case of proven
          dual infeasibility there should be at least one.)
     
          <strong>NOTE for implementers of solver interfaces:</strong> <br>
          The double pointers in the vector should point to arrays of length
          getNumCols() and they should be allocated via new[]. <br>
     
          <strong>NOTE for users of solver interfaces:</strong> <br>
          It is the user's responsibility to free the double pointers in the
          vector using delete[].
      */
      virtual std::vector<double*> getPrimalRays(int maxNumRays) const = 0;
  
      /** Get vector of indices of primal variables which are integer variables 
  	  but have fractional values in the current solution. */
      virtual OsiVectorInt getFractionalIndices(const double etol=1.e-05)
	const;
    //@}

    //-------------------------------------------------------------------------
    /**@name Methods to modify the objective, bounds, and solution

       For functions which take a set of indices as parameters
       (\c setObjCoeffSet(), \c setColSetBounds(), \c setRowSetBounds(),
       \c setRowSetTypes()), the parameters follow the C++ STL iterator
       convention: \c indexFirst points to the first index in the
       set, and \c indexLast points to a position one past the last index
       in the set.
    
    */
    //@{
      /** Set an objective function coefficient */
      virtual void setObjCoeff( int elementIndex, double elementValue ) = 0;

      /** Set a set of objective function coefficients */
      virtual void setObjCoeffSet(const int* indexFirst,
				  const int* indexLast,
				  const double* coeffList);

      /** Set a single column lower bound.
    	  Use -getInfinity() for -infinity. */
      virtual void setColLower( int elementIndex, double elementValue ) = 0;
      
      /** Set a single column upper bound.
    	  Use getInfinity() for infinity. */
      virtual void setColUpper( int elementIndex, double elementValue ) = 0;
      
      /** Set a single column lower and upper bound.
    	  The default implementation just invokes setColLower() and
    	  setColUpper() */
      virtual void setColBounds( int elementIndex,
    				 double lower, double upper ) {
    	 setColLower(elementIndex, lower);
    	 setColUpper(elementIndex, upper);
      }
    
      /** Set the upper and lower bounds of a set of columns.
    	  The default implementation just invokes setColBounds() over
	  and over again.
	  For each column, boundList must contain both a lower and
	  upper bound, in that order.
      */
      virtual void setColSetBounds(const int* indexFirst,
				   const int* indexLast,
				   const double* boundList);
      
      /** Set a single row lower bound.
    	  Use -getInfinity() for -infinity. */
      virtual void setRowLower( int elementIndex, double elementValue ) = 0;
      
      /** Set a single row upper bound.
    	  Use getInfinity() for infinity. */
      virtual void setRowUpper( int elementIndex, double elementValue ) = 0;
    
      /** Set a single row lower and upper bound.
    	  The default implementation just invokes setRowLower() and
    	  setRowUpper() */
      virtual void setRowBounds( int elementIndex,
    				 double lower, double upper ) {
    	 setRowLower(elementIndex, lower);
    	 setRowUpper(elementIndex, upper);
      }
    
      /** Set the type of a single row */
      virtual void setRowType(int index, char sense, double rightHandSide,
    			      double range) = 0;
    
      /** Set the bounds on a set of rows.
    	  The default implementation just invokes setRowBounds()
    	  over and over again.
      */
      virtual void setRowSetBounds(const int* indexFirst,
    				   const int* indexLast,
    				   const double* boundList);
    
      /** Set the type of a set of rows.
    	  The default implementation just invokes setRowType()
    	  over and over again.
      */
      virtual void setRowSetTypes(const int* indexFirst,
				  const int* indexLast,
				  const char* senseList,
				  const double* rhsList,
				  const double* rangeList);
#if 0    
      /// Set name of row if supported
      virtual void setRowName(int rowIndex, std::string & name) {};
    
      /// Set name of column if supported
      virtual void setColName(int colIndex, std::string & name) {};
#endif
    /// Set the objective function sense.
    /// (1 for min (default), -1 for max)
    virtual void setObjSense(double s) = 0;
    
    /** Set the primal solution variable values
    
	colsol[getNumCols()] is an array of values for the primal variables.
	These values are copied to memory owned by the solver interface object
	or the solver.  They will be returned as the result of getColSolution()
	until changed by another call to setColSolution() or by a call to any
	solver routine.  Whether the solver makes use of the solution in any
	way is solver-dependent.
    */
    virtual void setColSolution(const double *colsol) = 0;

    /** Set dual solution variable values

	rowprice[getNumRows()] is an array of values for the dual
	variables. These values are copied to memory owned by the solver
	interface object or the solver.  They will be returned as the result of
	getRowPrice() until changed by another call to setRowPrice() or by a
	call to any solver routine.  Whether the solver makes use of the
	solution in any way is solver-dependent.
    */

   virtual void setRowPrice(const double * rowprice) = 0;

    /** Set the objective coefficients for all columns
	array [getNumCols()] is an array of values for the objective.
        This defaults to a series of set operations and is here for speed.
    */
    virtual void setObjective(const double * array);

    /** Set the lower bounds for all columns
	array [getNumCols()] is an array of values for the objective.
        This defaults to a series of set operations and is here for speed.
    */
    virtual void setColLower(const double * array);

    /** Set the upper bounds for all columns
	array [getNumCols()] is an array of values for the objective.
        This defaults to a series of set operations and is here for speed.
    */
    virtual void setColUpper(const double * array);
    //@}

    //-------------------------------------------------------------------------
    /**@name Methods to set variable type */
    //@{
      /** Set the index-th variable to be a continuous variable */
      virtual void setContinuous(int index) = 0;
      /** Set the index-th variable to be an integer variable */
      virtual void setInteger(int index) = 0;
      /** Set the variables listed in indices (which is of length len) to be
	  continuous variables */
      virtual void setContinuous(const int* indices, int len);
      /** Set the variables listed in indices (which is of length len) to be
	  integer variables */
      virtual void setInteger(const int* indices, int len);
    //@}
    //-------------------------------------------------------------------------

#if OSI_KEEP_NAMES > 0
    //-------------------------------------------------------------------------
    /*! \name Routines to manipulate row and column names

      Osi supports three name management disciplines: `no names' (0), `lazy
      names' (1), and `full names' (2). See the description for
      #OsiNameDiscipline for details. Changing the name discipline (via
      setIntParam()) will not automatically add or remove name information,
      but setting the discipline to `no names' will make existing information
      inaccessible until the discipline is reset to `lazy names' or `full
      names'.

      OSI implementors: If you override any of the methods that read MPS,
      GMPL, or LP formats, or the loadFromCoinModel method, don't forget to
      process the name information. The setRowColNames functions below exist
      for this purpose.
    */
    //@{

      /*! \brief Data type for name vectors. */
      typedef std::vector<std::string> NameVec ;

      /*! \brief Generate a standard name of the form RowNNN or ColNNN
      
	Set \p rc to 'r' for a row name, 'c' for a column name.
	The `NNN' part will contain at least the specified number of digits,
	padding with zeros if necessary.
      */
      virtual std::string dfltRowColName(char rc,
					 int ndx, int digits = 0) const ;

      /*! \brief Return the name of the row if one exists or generate RowNNN

	Truncate name to maxLen characters.
      */
      virtual std::string getRowName(int rowIndex,
				     int maxLen = std::string::npos) const ;

      /*! \brief Return a pointer to a vector of row names

	If the name discipline (#OsiNameDiscipline) is `no names', the return
	value will be a vector of length zero. If the name discipline is
	`lazy names', the vector will contain only names supplied by the
	client and will be no larger than needed to hold those names; entries
	not supplied will be null strings. If the name discipline is `full
	names', the vector will have getNumRows() names, either supplied or
	generated.
      */
      virtual const NameVec &getRowNames() ;

      /*! \brief Set a row name

	Quietly does nothing if the name discipline (#OsiNameDiscipline) is
	`no names'. Quietly fails if the row index is invalid.
      */
      void setRowName(int ndx, std::string name) ;

      /*! \brief Set multiple row names

	The run of len entries starting at srcNames[srcNdx] are installed as
	row names starting at row index tgtNdx.
      */
      void setRowNames(NameVec &srcNames, int srcNdx, int len, int tgtNdx) ;
    
      /*! \brief Return the name of the column if one exists or generate ColNNN

	Truncate name to maxLen characters.
      */
      virtual std::string getColName(int colIndex,
				     int maxLen = std::string::npos) const ;

      /*! \brief Return a pointer to a vector of column names

	If the name discipline (#OsiNameDiscipline) is `no names', the return
	value will be a vector of length zero. If the name discipline is
	`lazy names', the vector will contain only names supplied by the
	client and will be no larger than needed to hold those names; entries
	not supplied will be null strings. If the name discipline is `full
	names', the vector will have getNumCols() names, either supplied or
	generated.
      */
      virtual const NameVec &getColNames() ;

      /*! \brief Set a column name

	Quietly does nothing if the name discipline (#OsiNameDiscipline) is
	`no names'. Quietly fails if the column index is invalid.
      */
      void setColName(int ndx, std::string name) ;

      /*! \brief Set multiple column names

	The run of len entries starting at srcNames[srcNdx] are installed as
	column names starting at column index tgtNdx.
      */
      void setColNames(NameVec &srcNames, int srcNdx, int len, int tgtNdx) ;

      /*! \brief Set row and column names from a CoinMpsIO object.
      
	If release = true, name information will be freed after processing.
	If the name discipline is `no names', you get what you asked for.
      */
      void setRowColNames(CoinMpsIO &mps, bool release = false) ;

      /*! \brief Set row and column names from a CoinModel object.

	If the name discipline is `no names', you get what you asked for.
      */
      void setRowColNames(CoinModel &mod) ;

      /*! \brief Set row and column names from a CoinLpIO object.

	If the name discipline is `no names', you get what you asked for.
      */
      void setRowColNames(CoinLpIO &mod) ;

    //@}
    //-------------------------------------------------------------------------
#endif
    
    //-------------------------------------------------------------------------
    /**@name Methods to modify the constraint system.

       Note that new columns are added as continuous variables.

    */
    //@{
      /** Add a column (primal variable) to the problem. */
      virtual void addCol(const CoinPackedVectorBase& vec,
			  const double collb, const double colub,   
			  const double obj) = 0;
      /** Add a set of columns (primal variables) to the problem.
      
	The default implementation simply makes repeated calls to
	addCol().
      */
      virtual void addCols(const int numcols,
			   const CoinPackedVectorBase * const * cols,
			   const double* collb, const double* colub,   
			   const double* obj);
      /** Add a column (primal variable) to the problem. */
      virtual void addCol(int numberElements, const int * rows, const double * elements,
			  const double collb, const double colub,   
			  const double obj) ;
      /** Add a set of columns (primal variables) to the problem.
      
	The default implementation simply makes repeated calls to
	addCol().
      */
      virtual void addCols(const int numcols,
			   const int * columnStarts, const int * rows, const double * elements,
			   const double* collb, const double* colub,   
			   const double* obj);
      /// Add columns using a CoinBuild object
      void addCols(const CoinBuild & buildObject);
      /** Add columns from a model object.  returns
         -1 if object in bad state (i.e. has row information)
         otherwise number of errors
         modelObject non const as can be regularized as part of build
      */
      int addCols(CoinModel & modelObject);
#if 0
      /** */
      virtual void addCols(const CoinPackedMatrix& matrix,
			   const double* collb, const double* colub,   
			   const double* obj);
#endif
      /** \brief Remove a set of columns (primal variables) from the
		 problem.

	The solver interface for a basis-oriented solver will maintain valid
	warm start information if all deleted variables are nonbasic.
      */
      virtual void deleteCols(const int num, const int * colIndices) = 0;
    
      /** Add a row (constraint) to the problem. */
      virtual void addRow(const CoinPackedVectorBase& vec,
    			  const double rowlb, const double rowub) = 0;
      /** */
      virtual void addRow(const CoinPackedVectorBase& vec,
    			  const char rowsen, const double rowrhs,   
    			  const double rowrng) = 0;
      /** Add a set of rows (constraints) to the problem.
      
	The default implementation simply makes repeated calls to
	addRow().
      */
      virtual void addRows(const int numrows,
			   const CoinPackedVectorBase * const * rows,
			   const double* rowlb, const double* rowub);
      /** Add a set of rows (constraints) to the problem.
      
	The default implementation simply makes repeated calls to
	addRow().
      */
      virtual void addRows(const int numrows,
			   const CoinPackedVectorBase * const * rows,
    			   const char* rowsen, const double* rowrhs,   
    			   const double* rowrng);
      /** Add a row (constraint) to the problem. */
      virtual void addRow(int numberElements, const int * columns, const double * element,
    			  const double rowlb, const double rowub) ;
      /** Add a set of rows (constraints) to the problem.
      
	The default implementation simply makes repeated calls to
	addRow().
      */
      virtual void addRows(const int numrows,
			   const int * rowStarts, const int * columns, const double * element,
			   const double* rowlb, const double* rowub);
      /// Add rows using a CoinBuild object
      void addRows(const CoinBuild & buildObject);
      /** Add rows from a model object.  returns
         -1 if object in bad state (i.e. has column information)
         otherwise number of errors.

         modelObject non const as can be regularized as part of build
      */
      int addRows(CoinModel & modelObject);
#if 0
      /** */
      virtual void addRows(const CoinPackedMatrix& matrix,
    			   const double* rowlb, const double* rowub);
      /** */
      virtual void addRows(const CoinPackedMatrix& matrix,
    			   const char* rowsen, const double* rowrhs,   
    			   const double* rowrng);
#endif
      /** \brief Delete a set of rows (constraints) from the problem.

	The solver interface for a basis-oriented solver will maintain valid
	warm start information if all deleted rows are loose.
      */
      virtual void deleteRows(const int num, const int * rowIndices) = 0;
    
      //-----------------------------------------------------------------------
      /** Apply a collection of cuts.

    	  Only cuts which have an <code>effectiveness >= effectivenessLb</code>
    	  are applied.
    	  <ul>
    	    <li> ReturnCode.numberIneffective() -- number of cuts which were
                 not applied because they had an
    	         <code>effectiveness < effectivenessLb</code>
    	    <li> ReturnCode.numberInconsistent() -- number of invalid cuts
    	    <li> ReturnCode.numberInconsistentWrtIntegerModel() -- number of
                 cuts that are invalid with respect to this integer model
            <li> ReturnCode.numberInfeasible() -- number of cuts that would
    	         make this integer model infeasible
            <li> ReturnCode.numberApplied() -- number of integer cuts which
    	         were applied to the integer model
            <li> cs.size() == numberIneffective() +
                              numberInconsistent() +
    			      numberInconsistentWrtIntegerModel() +
    			      numberInfeasible() +
    			      nubmerApplied()
          </ul>
      */
      virtual ApplyCutsReturnCode applyCuts(const OsiCuts & cs,
    					    double effectivenessLb = 0.0);
      /** Apply a collection of row cuts which are all effective.
	  applyCuts seems to do one at a time which seems inefficient.
	  Would be even more efficient to pass an array of pointers.
      */
      virtual void applyRowCuts(int numberCuts, const OsiRowCut * cuts);
      /** Apply a collection of row cuts which are all effective.
	  This is passed in as an array of pointers.
      */
      virtual void applyRowCuts(int numberCuts, const OsiRowCut ** cuts);
    //@}

  //---------------------------------------------------------------------------

  /**@name Methods to input a problem */
  //@{
    /** Load in an problem by copying the arguments (the constraints on the
        rows are given by lower and upper bounds). If a pointer is 0 then the
        following values are the default:
        <ul>
          <li> <code>colub</code>: all columns have upper bound infinity
          <li> <code>collb</code>: all columns have lower bound 0 
          <li> <code>rowub</code>: all rows have upper bound infinity
          <li> <code>rowlb</code>: all rows have lower bound -infinity
	  <li> <code>obj</code>: all variables have 0 objective coefficient
        </ul>
    */
    virtual void loadProblem(const CoinPackedMatrix& matrix,
			     const double* collb, const double* colub,   
			     const double* obj,
			     const double* rowlb, const double* rowub) = 0;
			    
    /** Load in an problem by assuming ownership of the arguments (the
        constraints on the rows are given by lower and upper bounds).
	For default values see the previous method.

	\warning
	The arguments passed to this method will be
	freed using the C++ <code>delete</code> and <code>delete[]</code>
	functions. 
    */
    virtual void assignProblem(CoinPackedMatrix*& matrix,
			       double*& collb, double*& colub, double*& obj,
			       double*& rowlb, double*& rowub) = 0;

    /** Load in an problem by copying the arguments (the constraints on the
	rows are given by sense/rhs/range triplets). If a pointer is 0 then the
	following values are the default:
	<ul>
          <li> <code>colub</code>: all columns have upper bound infinity
          <li> <code>collb</code>: all columns have lower bound 0 
	  <li> <code>obj</code>: all variables have 0 objective coefficient
          <li> <code>rowsen</code>: all rows are >=
          <li> <code>rowrhs</code>: all right hand sides are 0
          <li> <code>rowrng</code>: 0 for the ranged rows
        </ul>
    */
    virtual void loadProblem(const CoinPackedMatrix& matrix,
			     const double* collb, const double* colub,
			     const double* obj,
			     const char* rowsen, const double* rowrhs,   
			     const double* rowrng) = 0;

    /** Load in an problem by assuming ownership of the arguments (the
        constraints on the rows are given by sense/rhs/range triplets). For
        default values see the previous method.

	\warning
	The arguments passed to this method will be
	freed using the C++ <code>delete</code> and <code>delete[]</code>
	functions. 
    */
    virtual void assignProblem(CoinPackedMatrix*& matrix,
			       double*& collb, double*& colub, double*& obj,
			       char*& rowsen, double*& rowrhs,
			       double*& rowrng) = 0;

    /** Just like the other loadProblem() methods except that the matrix is
	given in a standard column major ordered format (without gaps). */
    virtual void loadProblem(const int numcols, const int numrows,
			     const CoinBigIndex * start, const int* index,
			     const double* value,
			     const double* collb, const double* colub,   
			     const double* obj,
			     const double* rowlb, const double* rowub) = 0;

    /** Just like the other loadProblem() methods except that the matrix is
	given in a standard column major ordered format (without gaps). */
    virtual void loadProblem(const int numcols, const int numrows,
			     const CoinBigIndex * start, const int* index,
			     const double* value,
			     const double* collb, const double* colub,   
			     const double* obj,
			     const char* rowsen, const double* rowrhs,   
  			     const double* rowrng) = 0;
    /** This loads a model from a coinModel object - returns number of errors.

        modelObject not const as may be changed as part of process.
        If keepSolution true will try and keep warmStart
    */
     virtual int loadFromCoinModel (  CoinModel & modelObject, bool keepSolution=false);

    /** Read a problem in MPS format from the given filename.
    
	The default implementation uses CoinMpsIO::readMps() to read
	the MPS file and returns the number of errors encountered.
   */
    virtual int readMps(const char *filename,
			 const char *extension = "mps") ;

    /** Read a problem in MPS format from the given full filename.
    
	This uses CoinMpsIO::readMps() to read
	the MPS file and returns the number of errors encountered.
	It also may return an array of set information
   */
  virtual int readMps(const char *filename, const char*extension,
			int & numberSets, CoinSet ** & sets);

    /** Read a problem in GMPL format from the given filenames.
    
        Will only work if glpk installed
   */
   virtual int readGMPL(const char *filename, const char * dataname=NULL);
    /** Write the problem in MPS format to the specified file.

      If objSense is non-zero, a value of -1.0 causes the problem to be
      written with a maximization objective; +1.0 forces a minimization
      objective. If objSense is zero, the choice is left to implementation.
    */
    virtual void writeMps(const char *filename,
			  const char *extension = "mps",
			  double objSense=0.0) const = 0;

    /** Write the problem in MPS format to the specified file.

	Row and column names may be null.
	formatType is
	<ul>
	  <li> 0 - normal
	  <li> 1 - extra accuracy 
	  <li> 2 - IEEE hex
	</ul>

	Returns non-zero on I/O error
    */
    int writeMpsNative(const char *filename, 
		       const char ** rowNames, const char ** columnNames,
		       int formatType=0,int numberAcross=2,
		       double objSense=0.0, int numberSOS=0,
		       const CoinSet * setInfo=NULL) const ;

/***********************************************************************/
// Lp files 

  /** Write the problem into an Lp file of the given filename with the 
      specified extension.
      Coefficients with value less than epsilon away from an integer value
      are written as integers.
      Write at most numberAcross monomials on a line.
      Write non integer numbers with decimals digits after the decimal point.

      The written problem is always a minimization problem.
      If the current problem is a maximization problem, the 
      intended objective function for the written problem is the current
      objective function multiplied by -1. If the current problem is a
      minimization problem, the intended objective function for the
      written problem is the current objective function.
      If objSense < 0, the intended objective function is multiplied by -1
      before writing the problem. It is left unchanged otherwise.

      Write objective function name and constraint names if useRowNames is 
      true. This version calls writeLpNative().
  */
  virtual void writeLp(const char *filename,
               const char *extension = "lp",
                double epsilon = 1e-5,
                int numberAcross = 10,
                int decimals = 5,
                double objSense = 0.0,
	        bool useRowNames = true) const;

  /** Write the problem into the file pointed to by the parameter fp. 
      Other parameters are similar to 
      those of writeLp() with first parameter filename.
  */
  virtual void writeLp(FILE *fp,
                double epsilon = 1e-5,
                int numberAcross = 10,
                int decimals = 5,
                double objSense = 0.0,
	        bool useRowNames = true) const;

  /** Write the problem into an Lp file. Parameters are similar to 
      those of writeLp(), but in addition row names and column names
      may be given. 

      Parameter rowNames may be NULL, in which case default row names 
      are used. If rowNames is not NULL, it must have exactly one entry
      per row in the problem and one additional
      entry (rowNames[getNumRows()] with the objective function name.
      These getNumRows()+1 entries must be distinct. If this is not the 
      case, default row names
      are used. In addition, format restrictions are imposed on names
      (see CoinLpIO::is_invalid_name() for details).

      Similar remarks can be made for the parameter columnNames which
      must either be NULL or have exactly getNumCols() distinct entries.

      Write objective function name and constraint names if 
      useRowNames is true. */
  int writeLpNative(const char *filename,
		    char const * const * const rowNames,
		    char const * const * const columnNames,
		    const double epsilon = 1.0e-5,
                    const int numberAcross = 10,
                    const int decimals = 5,
                    const double objSense = 0.0,
		    const bool useRowNames = true) const;

  /** Write the problem into the file pointed to by the parameter fp. 
      Other parameters are similar to 
      those of writeLpNative() with first parameter filename.
  */
  int writeLpNative(FILE *fp,
		    char const * const * const rowNames,
		    char const * const * const columnNames,
		    const double epsilon = 1.0e-5,
                    const int numberAcross = 10,
                    const int decimals = 5,
                    const double objSense = 0.0,
		    const bool useRowNames = true) const;

  /// Read file in LP format from file with name filename. 
  /// See class CoinLpIO for description of this format.
  virtual int readLp(const char *filename, const double epsilon = 1e-5);

  /// Read file in LP format from the file pointed to by fp. 
  /// See class CoinLpIO for description of this format.
  int readLp(FILE *fp, const double epsilon = 1e-5);

  /**
     I (JJF) am getting annoyed because I can't just replace a matrix.
     The default behavior of this is do nothing so only use where that would not matter
     e.g. strengthening a matrix for MIP
  */
  virtual void replaceMatrixOptional(const CoinPackedMatrix & matrix) {};
  /// And if it does matter (not used at present)
  virtual void replaceMatrix(const CoinPackedMatrix & matrix) {abort();};
  //@}

  //---------------------------------------------------------------------------

  /**@name Miscellaneous */
  //@{
#ifdef COIN_SNAPSHOT
  /// Return a CoinSnapshot
  virtual CoinSnapshot * snapshot(bool createArrays=true) const;
#endif
  //@}

  //---------------------------------------------------------------------------

  /**@name Setting/Accessing application data */
  //@{
    /** Set application data.

	This is a pointer that the application can store into and
	retrieve from the solver interface.
	This field is available for the application to optionally
	define and use.
    */
    void setApplicationData (void * appData);
    /** Create a clone of an Auxiliary Information object.
        The base class just stores an application data pointer
        but can be more general.  Application data pointer is
        designed for one user while this can be extended to cope
        with more general extensions.
    */
    void setAuxiliaryInfo(OsiAuxInfo * auxiliaryInfo);

    /// Get application data
    void * getApplicationData() const;
    /// Get pointer to auxiliary info object
    OsiAuxInfo * getAuxiliaryInfo() const;
  //@}
  //---------------------------------------------------------------------------

  /**@name Message handling
  
    See the COIN library documentation for additional information about
    COIN message facilities.
  
  */
  //@{
  /** Pass in a message handler
  
    It is the client's responsibility to destroy a message handler installed
    by this routine; it will not be destroyed when the solver interface is
    destroyed. 
  */
  void passInMessageHandler(CoinMessageHandler * handler);
  /// Set language
  void newLanguage(CoinMessages::Language language);
  void setLanguage(CoinMessages::Language language)
  {newLanguage(language);};
  /// Return a pointer to the current message handler
  CoinMessageHandler * messageHandler() const
  {return handler_;};
  /// Return the current set of messages
  CoinMessages messages() 
  {return messages_;};
  /// Return a pointer to the current set of messages
  CoinMessages * messagesPointer() 
  {return &messages_;};
  //@}
  //---------------------------------------------------------------------------
  /**@name Methods for dealing with discontinuities other than integers.
  
     Osi should be able to know about SOS and other types.  This is an optional
     section where such information can be stored.

  */
  //@{
    /** \brief Identify integer variables and create corresponding objects.
  
      Record integer variables and create an OsiSimpleInteger object for each
      one.  All existing OsiSimpleInteger objects will be destroyed.
      If justCount then no objects created and we just store numberIntegers_
    */

    void findIntegers(bool justCount);
    /** \brief Identify integer variables and SOS and create corresponding objects.
  
      Record integer variables and create an OsiSimpleInteger object for each
      one.  All existing OsiSimpleInteger objects will be destroyed.
      If the solver supports SOS then do the same for SOS.

      If justCount then no objects created and we just store numberIntegers_
      Returns number of SOS
    */

    virtual int findIntegersAndSOS(bool justCount);
    /// Get the number of objects
    inline int numberObjects() const { return numberObjects_;};
    /// Set the number of objects
    inline void setNumberObjects(int number) 
    {  numberObjects_=number;};

    /// Get the array of objects
    inline OsiObject ** objects() const { return object_;};

    /// Get the specified object
    const inline OsiObject * object(int which) const { return object_[which];};
    /// Get the specified object
    inline OsiObject * modifiableObject(int which) const { return object_[which];};

    /// Delete all object information
    void deleteObjects();

    /** Add in object information.
  
      Objects are cloned; the owner can delete the originals.
    */
    void addObjects(int numberObjects, OsiObject ** objects);
    /** Use current solution to set bounds so current integer feasible solution will stay feasible.
        Only feasible bounds will be used, even if current solution outside bounds.  The amount of
        such violation will be returned (and if small can be ignored)
    */
    double forceFeasible();
  //@}
  //---------------------------------------------------------------------------

  /**@name Methods related to testing generated cuts */
  //@{
    /** Activate the row cut debugger.

        If the model name passed is on list of known models
	then all cuts are checked to see that they do NOT cut
	off the known optimal solution.  
    */
    virtual void activateRowCutDebugger (const char * modelName);

    /** Activate debugger using full solution array.
        Only integer values need to be correct.
        Up to user to get it correct.
        Sets up debugger if solution was valid.
    */
    virtual void activateRowCutDebugger( const double * solution);
    /** Get the row cut debugger.

	If there is a row cut debugger object associated with
	model AND if the known optimal solution is within the
	current feasible region then a pointer to the object is
	returned which may be used to test validity of cuts.

	Otherwise NULL is returned
    */
    const OsiRowCutDebugger * getRowCutDebugger() const;
    /// If you want to get debugger object even if not on optimal path then use this
    const OsiRowCutDebugger * getRowCutDebuggerAlways() const;

  //@} 
  /// All OsiSimplex methods now moved here
  
  /** Simplex Interface Abstract Base Class

  Abstract Base Class for describing an advanced interface to a simplex solver.
  When switched on allows great control of simplex iterations.  Also allows
  access to tableau.
  */
  
public:
  ///@name OsiSimplexInterface methods 
  //@{
  /** Returns 1 if can just do getBInv etc
      2 if has all OsiSimplex methods
      and 0 if it has none */
  virtual int canDoSimplexInterface() const;
  /**Enables normal operation of subsequent functions.
     This method is supposed to ensure that all typical things (like
     reduced costs, etc.) are updated when individual pivots are executed
     and can be queried by other methods.  says whether will be
     doing primal or dual
  */
  virtual void enableSimplexInterface(bool doingPrimal) ;

  ///Undo whatever setting changes the above method had to make
  virtual void disableSimplexInterface() ;

  /** Tells solver that calls to getBInv etc are about to take place.
      Underlying code may need mutable as this may be called from 
      CglCut:;generateCuts which is const.  If that is too horrific then
      each solver e.g. BCP or CBC will have to do something outside
      main loop.
  */
  virtual void enableFactorization() const;
  /// and stop
  virtual void disableFactorization() const;

  /** Returns true if a basis is available
      AND problem is optimal.  This should be used to see if
      the BInvARow type operations are possible and meaningful. 
  */
  virtual bool basisIsAvailable() const ;
  /// Synonym for basisIsAvailable!
  inline bool optimalBasisIsAvailable() const
  { return basisIsAvailable();};

  /** The following two methods may be replaced by the
     methods of OsiSolverInterface using OsiWarmStartBasis if:
     1. OsiWarmStartBasis resize operation is implemented
     more efficiently and
     2. It is ensured that effects on the solver are the same

     Returns a basis status of the structural/artificial variables 
     At present as warm start i.e 0 free, 1 basic, 2 upper, 3 lower

     NOTE  artificials are treated as +1 elements so for <= rhs
     artificial will be at lower bound if constraint is tight
  */
  virtual void getBasisStatus(int* cstat, int* rstat) const ;

  /** Set the status of structural/artificial variables and
      factorize, update solution etc 

     NOTE  artificials are treated as +1 elements so for <= rhs
     artificial will be at lower bound if constraint is tight
  */
  virtual int setBasisStatus(const int* cstat, const int* rstat) ;

  /** Perform a pivot by substituting a colIn for colOut in the basis. 
     The status of the leaving variable is given in outStatus. Where
     1 is to upper bound, -1 to lower bound
     Return code was undefined - now for OsiClp is 0 for okay,
     1 if inaccuracy forced re-factorization (should be okay) and
     -1 for singular factorization
  */
  virtual int pivot(int colIn, int colOut, int outStatus) ;

  /** Obtain a result of the primal pivot 
      Outputs: colOut -- leaving column, outStatus -- its status,
      t -- step size, and, if dx!=NULL, *dx -- primal ray direction.
      Inputs: colIn -- entering column, sign -- direction of its change (+/-1).
      Both for colIn and colOut, artificial variables are index by
      the negative of the row index minus 1.
      Return code (for now): 0 -- leaving variable found, 
      -1 -- everything else?
      Clearly, more informative set of return values is required 
      Primal and dual solutions are updated
  */
  virtual int primalPivotResult(int colIn, int sign, 
				int& colOut, int& outStatus, 
				double& t, CoinPackedVector* dx);

  /** Obtain a result of the dual pivot (similar to the previous method)
      Differences: entering variable and a sign of its change are now
      the outputs, the leaving variable and its statuts -- the inputs
      If dx!=NULL, then *dx contains dual ray
      Return code: same
  */
  virtual int dualPivotResult(int& colIn, int& sign, 
			      int colOut, int outStatus, 
			      double& t, CoinPackedVector* dx) ;

  ///Get the reduced gradient for the cost vector c 
  virtual void getReducedGradient(double* columnReducedCosts, 
				  double * duals,
				  const double * c) ;

  /** Set a new objective and apply the old basis so that the
      reduced costs are properly updated */
  virtual void setObjectiveAndRefresh(double* c) ;

  ///Get a row of the tableau (slack part in slack if not NULL)
  virtual void getBInvARow(int row, double* z, double * slack=NULL) const ;

  ///Get a row of the basis inverse
  virtual void getBInvRow(int row, double* z) const ;

  ///Get a column of the tableau
  virtual void getBInvACol(int col, double* vec) const ;

  ///Get a column of the basis inverse
  virtual void getBInvCol(int col, double* vec) const ;

  /** Get basic indices (order of indices corresponds to the
      order of elements in a vector retured by getBInvACol() and
      getBInvCol()).
  */
  virtual void getBasics(int* index) const ;
  //@}
   
  //---------------------------------------------------------------------------

  ///@name Constructors and destructors
  //@{
    /// Default Constructor
    OsiSolverInterface(); 
    
    /** Clone

      The result of calling clone(false) is defined to be equivalent to
      calling the default constructor OsiSolverInterface().
    */
    virtual OsiSolverInterface * clone(bool copyData = true) const = 0;
  
    /// Copy constructor 
    OsiSolverInterface(const OsiSolverInterface &);
  
    /// Assignment operator 
    OsiSolverInterface & operator=(const OsiSolverInterface& rhs);
  
    /// Destructor 
    virtual ~OsiSolverInterface ();

    /** Reset the solver interface.

    A call to reset() returns the solver interface to the same state as
    it would have if it had just been constructed by calling the default
    constructor OsiSolverInterface().
    */
    virtual void reset();
  //@}

  //---------------------------------------------------------------------------

protected:
  ///@name Protected methods
  //@{
    /** Apply a row cut (append to the constraint matrix). */
    virtual void applyRowCut( const OsiRowCut & rc ) = 0;

    /** Apply a column cut (adjust the bounds of one or more variables). */
    virtual void applyColCut( const OsiColCut & cc ) = 0;

    /** A quick inlined function to convert from the lb/ub style of
	constraint definition to the sense/rhs/range style */
    inline void
    convertBoundToSense(const double lower, const double upper,
			char& sense, double& right, double& range) const;
    /** A quick inlined function to convert from the sense/rhs/range style
	of constraint definition to the lb/ub style */
    inline void
    convertSenseToBound(const char sense, const double right,
			const double range,
			double& lower, double& upper) const;
    /** A quick inlined function to force a value to be between a minimum and
	a maximum value */
    template <class T> inline T
    forceIntoRange(const T value, const T lower, const T upper) const {
      return value < lower ? lower : (value > upper ? upper : value);
    }
    /** Set OsiSolverInterface object state for default constructor

      This routine establishes the initial values of data fields in the
      OsiSolverInterface object when the object is created using the
      default constructor.
    */
    void setInitialData();
  //@}

  ///@name Protected member data
  //@{
    /// Pointer to row cut debugger object
    OsiRowCutDebugger * rowCutDebugger_;
   // Why not just make useful stuff protected?
   /// Message handler
  CoinMessageHandler * handler_;
  /** Flag to say if the currrent handler is the default handler.
      Indicates if the solver interface object is responsible
      for destruction of the handler (true) or if the client is
      responsible (false).
  */
  bool defaultHandler_;
  /// Messages
  CoinMessages messages_;
  /// Number of integers
  int numberIntegers_;
  /// Total number of objects
  int numberObjects_;

  /// Integer and ... information (integer info normally at beginning)
  OsiObject ** object_;

  //@}
  
  //---------------------------------------------------------------------------

private:
  ///@name Private member data 
  //@{
    /// Pointer to user-defined data structure - and more if user wants
    OsiAuxInfo * appDataEtc_;
    /// Array of integer parameters
    int intParam_[OsiLastIntParam];
    /// Array of double parameters
    double dblParam_[OsiLastDblParam];
    /// Array of string parameters
    std::string strParam_[OsiLastStrParam];
    /// Array of hint parameters
    bool hintParam_[OsiLastHintParam];
    /// Array of hint strengths
    OsiHintStrength hintStrength_[OsiLastHintParam];
    /** Warm start information used for hot starts when the default
       hot start implementation is used. */
    CoinWarmStart* ws_;

#if OSI_KEEP_NAMES > 0
    /// Row name vector has no missing names
    bool rowNamesNoHoles_ ;
    /// Row names
    NameVec rowNames_ ;
    /// Column name vector has no missing names
    bool colNamesNoHoles_ ;
    /// Column names
    NameVec colNames_ ;
#endif

 //@}
};

//#############################################################################
/** A function that tests the methods in the OsiSolverInterface class. The
    only reason for it not to be a member method is that this way it doesn't
    have to be compiled into the library. And that's a gain, because the
    library should be compiled with optimization on, but this method should be
    compiled with debugging. Also, if this method is compiled with
    optimization, the compilation takes 10-15 minutes and the machine pages
    (has 256M core memory!)... */
void
OsiSolverInterfaceCommonUnitTest(
   const OsiSolverInterface* emptySi,
   const std::string & mpsDir,
   const std::string & netlibDir);

//#############################################################################
/** A function that tests that a lot of problems given in MPS files (mostly
    the NETLIB problems) solve properly with all the specified solvers. */
void
OsiSolverInterfaceMpsUnitTest(
   const std::vector<OsiSolverInterface*> & vecSiP,
   const std::string & mpsDir);

//#############################################################################
/** A quick inlined function to convert from the lb/ub style of constraint
    definition to the sense/rhs/range style */
inline void
OsiSolverInterface::convertBoundToSense(const double lower, const double upper,
					char& sense, double& right,
					double& range) const
{
  double inf = getInfinity();
  range = 0.0;
  if (lower > -inf) {
    if (upper < inf) {
      right = upper;
      if (upper==lower) {
        sense = 'E';
      } else {
        sense = 'R';
        range = upper - lower;
      }
    } else {
      sense = 'G';
      right = lower;
    }
  } else {
    if (upper < inf) {
      sense = 'L';
      right = upper;
    } else {
      sense = 'N';
      right = 0.0;
    }
  }
}

//-----------------------------------------------------------------------------
/** A quick inlined function to convert from the sense/rhs/range style of
    constraint definition to the lb/ub style */
inline void
OsiSolverInterface::convertSenseToBound(const char sense, const double right,
					const double range,
					double& lower, double& upper) const
{
  double inf=getInfinity();
  switch (sense) {
  case 'E':
    lower = upper = right;
    break;
  case 'L':
    lower = -inf;
    upper = right;
    break;
  case 'G':
    lower = right;
    upper = inf;
    break;
  case 'R':
    lower = right - range;
    upper = right;
    break;
  case 'N':
    lower = -inf;
    upper = inf;
    break;
  }
}

#endif
-------------- next part --------------
// Copyright (C) 2007, Lou Hafer and others.  All Rights Reserved.
#if defined(_MSC_VER)
// Turn off compiler warning about long names
#  pragma warning(disable:4786)
#endif

#define OSI_KEEP_NAMES 1

#if OSI_KEEP_NAMES > 0

#include <sstream>
#include <iomanip>

#include "OsiSolverInterface.hpp"
#include "CoinLpIO.hpp"
#include "CoinMpsIO.hpp"
#include "CoinModel.hpp"

/*
  These routines support three name disciplines:

    0: No names: No name information is retained. rowNames_ and colNames_ are
       always vectors of length 0. Requests for individual names will return
       a name of the form RowNNN or ColNNN, generated on request.

    1: Lazy names: Name information supplied by the client is retained.
       rowNames_ and colNames_ are sized to be large enough to hold names
       supplied by the client, and no larger. If the client has left holes,
       those entries will contain a null string. Requests for individual names
       will return the name supplied by the client, or a generated name.
       Requests for a vector of names will return a reference to rowNames_ or
       colNames_, with no modification.

       This mode is intended for applications like branch-and-cut, where the
       client is only interested in the original constraint system and could
       care less about names for generated constraints and variables. The
       various read[Mps,GMPL,Lp] routines capture the names that are part of
       the input format. If the client is building from scratch, they'll need
       to supply the names as they install constraints and variables.

    2: Full names: From the client's point of view, this looks exactly like
       lazy names, except that when a vector of names is requested, the vector
       is always sized to match the constraint system and all entries have
       names (either supplied or generated). Internally, full names looks just
       like lazy names, with the exception that if the client requests one of
       the name vectors, we generate the full version on the spot and keep it
       around for further use.

       This approach sidesteps some ugly implementation issues. The base
       routines to add a row or column, or load a problem from matrices, are
       pure virtual. There's just no way to guarantee we can keep the name
       vectors up-to-date with each modification. Nor do we want to be in the
       business of generating a name as soon as the row or column appears, only
       to have our generated name immediately overridden by the client.

  Arguably these magic numbers should be an enum, but that's not the current
  OSI style.
*/

namespace {

/*
  Generate a `name' that's really an error message. A separate routine
  strictly for standardisation and ease of use.
*/
std::string invRowColName (char rcd, int ndx)

{ std::ostringstream buildName ;

  buildName << "!!invalid " ;
  switch (rcd)
  { case 'r':
    { buildName << "Row" << ndx << "!!" ;
      break ; }
    case 'c':
    { buildName << "Col" << ndx << "!!" ;
      break ; }
    case 'd':
    { buildName << "Discipline" << ndx << "!!" ;
      break ; }
    default:
    { buildName.str("!!Internal Confusion ") ;
      buildName << __FILE__ << ":" << __LINE__ << "!!" ;
      break ; } }

  return (buildName.str()) ; }

/*
  Adjust the allocated capacity of the name vectors, if they're sufficiently
  far off (more than 1000 elements). Use this routine only if you don't need
  the current contents of the vectors. The `assignment & swap' bit is a trick
  lifted from Stroustrop 16.3.8 to make sure we really give back some space.
*/
void reallocRowColNames (OsiSolverInterface::NameVec &rowNames, int m,
			 OsiSolverInterface::NameVec &colNames, int n)

{ int rowCap = rowNames.capacity() ;
  int colCap = colNames.capacity() ;

  if (rowCap-m > 1000)
  { rowNames.resize(m) ;
    OsiSolverInterface::NameVec tmp = rowNames ;
    rowNames.swap(tmp) ; }
  else
  if (rowCap < m)
  { rowNames.reserve(m) ; }
  assert(rowNames.capacity() >= m) ;

  if (colCap-n > 1000)
  { colNames.resize(n) ;
    OsiSolverInterface::NameVec tmp = colNames ;
    colNames.swap(tmp) ; }
  else
  if (colCap < n)
  { colNames.reserve(n) ; }
  assert(colNames.capacity() >= n) ;

  return ; }


/*
  It's handy to have a 0-length name vector hanging around to use as a return
  value when the name discipline = 'no names'. Then we don't have to worry
  about what's actually occupying rowNames_ or colNames_.
*/

const OsiSolverInterface::NameVec zeroLengthNameVec(0) ;

}

/*
  Generate the default RowNNN/ColNNN. This is a separate routine so that it's
  available to generate names for new rows and columns. digits defaults to 0.
*/

std::string
OsiSolverInterface::dfltRowColName (char rc, int ndx, int digits) const

{ std::ostringstream buildName ;

  buildName << ((rc == 'r')?"Row":"Col") ;
  if (digits > 0)
  { buildName << std::setw(digits) << std::setfill('0') ; }
  buildName << ndx ;

  return buildName.str() ; }


/*
  Return a row name, according to the current name discipline, truncated if
  necessary. If the row index is out of range, the name becomes an error
  message.
*/
std::string OsiSolverInterface::getRowName (int ndx, int maxLen) const

{ int nameDiscipline ;
  std::string name ;
/*
  Check for valid row index.
*/
  if (ndx < 0 || ndx >= getNumRows())
  { name = invRowColName('r',ndx) ;
    return (name) ; }
/*
  Determine how we're handling names.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
/*
  Find/generate the proper name, based on discipline.
*/
  switch (nameDiscipline)
  { case 0:
    { name = dfltRowColName('r',ndx) ;
      break ; }
    case 1:
    case 2:
    { name = "" ;
      if (ndx < rowNames_.size())
	name = rowNames_[ndx] ;
      if (name.length() == 0)
	name = dfltRowColName('r',ndx) ;
      break ; }
    default:
    { name = invRowColName('d',nameDiscipline) ;
      return (name) ; } }
/*
  Return the (possibly truncated) substring. The default for maxLen is npos
  (no truncation).
*/
  return (name.substr(0,maxLen)) ; }


/*
  Return the vector of row names. The vector we need depends on the name
  discipline:
    0: return a vector of length 0
    1: return rowNames_, no tweaking required
    2: Check that rowNames_ is complete. Generate a complete vector on
       the spot if we need it.
*/
const OsiSolverInterface::NameVec &OsiSolverInterface::getRowNames ()

{ int nameDiscipline ;
/*
  Determine how we're handling names.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
/*
  Return the proper vector, as described at the head of the routine. If we
  need to generate a full vector, resize the existing vector and scan, filling
  in entries as required.
*/
  switch (nameDiscipline)
  { case 0:
    { return (zeroLengthNameVec) ; }
    case 1:
    { return (rowNames_) ; }
    case 2:
    { if (rowNamesNoHoles_ == true)
      { return (rowNames_) ; }
    
      int m = getNumRows() ;
      if (rowNames_.size() < m)
      { rowNames_.resize(m) ; }
      for (int i = 0 ; i < m ; i++)
      { if (rowNames_[i].length() == 0)
	{ rowNames_[i] = dfltRowColName('r',i) ; } }
      rowNamesNoHoles_ = true ;

      return (rowNames_) ; }
    default:
    { /* quietly fail */
      return (zeroLengthNameVec) ; } }
/*
  We should never reach here.
*/
  assert(false) ;

  return (zeroLengthNameVec) ; }
  

/*
  Return a column name, according to the current name discipline, truncated if
  necessary. If the column index is out of range, the name becomes an error
  message.
*/
std::string OsiSolverInterface::getColName (int ndx, int maxLen) const

{ int nameDiscipline ;
  std::string name ;
/*
  Check for valid column index.
*/
  if (ndx < 0 || ndx >= getNumCols())
  { name = invRowColName('c',ndx) ;
    return (name) ; }
/*
  Determine how we're handling names.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
/*
  Find/generate the proper name, based on discipline.
*/
  switch (nameDiscipline)
  { case 0:
    { name = dfltRowColName('c',ndx) ;
      break ; }
    case 1:
    case 2:
    { name = "" ;
      if (ndx < colNames_.size())
	name = colNames_[ndx] ;
      if (name.length() == 0)
	name = dfltRowColName('c',ndx) ;
      break ; }
    default:
    { name = invRowColName('d',nameDiscipline) ;
      return (name) ; } }
/*
  Return the (possibly truncated) substring. The default for maxLen is npos
  (no truncation).
*/
  return (name.substr(0,maxLen)) ; }


/*
  Return the vector of column names. The vector we need depends on the name
  discipline:
    0: return a vector of length 0
    1: return colNames_, no tweaking required
    2: Check that colNames_ is complete. Generate a complete vector on
       the spot if we need it.
*/
const OsiSolverInterface::NameVec &OsiSolverInterface::getColNames ()

{ int nameDiscipline ;
/*
  Determine how we're handling names.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
/*
  Return the proper vector, as described at the head of the routine. If we
  need to generate a full vector, resize the existing vector and scan, filling
  in entries as required.
*/
  switch (nameDiscipline)
  { case 0:
    { return (zeroLengthNameVec) ; }
    case 1:
    { return (colNames_) ; }
    case 2:
    { if (colNamesNoHoles_ == true)
      { return (colNames_) ; }
    
      int n = getNumCols() ;
      if (colNames_.size() < n)
      { colNames_.resize(n) ; }
      for (int j = 0 ; j < n ; j++)
      { if (colNames_[j].length() == 0)
	{ colNames_[j] = dfltRowColName('c',j) ; } }
      colNamesNoHoles_ = true ;

      return (colNames_) ; }
    default:
    { /* quietly fail */
      return (zeroLengthNameVec) ; } }
/*
  We should never reach here.
*/
  assert(false) ;

  return (zeroLengthNameVec) ; }
  

/*
  Set a single row name. Quietly does nothing if the index or name discipline
  is invalid.
*/
void OsiSolverInterface::setRowName (int ndx, std::string name)

{ int nameDiscipline ;
/*
  Quietly do nothing if the index is out of bounds. This should be changed,
  but what's our error convention, eh? There's no precedent in
  OsiSolverInterface.cpp.
*/
  if (ndx < 0 || ndx >= getNumRows())
  { return ; }
/*
  Get the name discipline.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
/*
  Do the right thing, according to the discipline.
*/
  switch (nameDiscipline)
  { case 0:
    { break ; }
    case 1:
    case 2:
    { if (ndx >= rowNames_.size())
      { rowNamesNoHoles_ = false ; }
      if (ndx > rowNames_.capacity())
      { rowNames_.resize(ndx+1) ; }
      rowNames_[ndx] = name ;
      break ; }
    default:
    { break ; } }

  return ; }


/*
  Set a single column name. Quietly does nothing if the index or name
  discipline is invalid.
*/
void OsiSolverInterface::setColName (int ndx, std::string name)

{ int nameDiscipline ;
/*
  Quietly do nothing if the index is out of bounds. This should be changed,
  but what's our error convention, eh? There's no precedent in
  OsiSolverInterface.cpp.
*/
  if (ndx < 0 || ndx >= getNumCols())
  { return ; }
/*
  Get the name discipline.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
/*
  Do the right thing, according to the discipline.
*/
  switch (nameDiscipline)
  { case 0:
    { break ; }
    case 1:
    case 2:
    { if (ndx > colNames_.size())
      { colNamesNoHoles_ = false ; }
      if (ndx > colNames_.capacity())
      { colNames_.resize(ndx+1) ; }
      colNames_[ndx] = name ;
      break ; }
    default:
    { break ; } }

  return ; }

/*
  Install the name information from a CoinMpsIO object. Free the information
  in the object if requested (default is to not free).
*/
void OsiSolverInterface::setRowColNames (CoinMpsIO &mps, bool release)

{ int nameDiscipline,m,n ;
/*
  Whatever happens, we're about to clean out the current name vectors. Decide
  on an appropriate size and call reallocRowColNames to adjust capacity.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
  if (nameDiscipline == 0)
  { m = 0 ;
    n = 0 ; }
  else
  { m = mps.getNumRows() ;
    n = mps.getNumCols() ; }
  reallocRowColNames(rowNames_,m,colNames_,n) ;
/*
  If name discipline is `no names', we're done already. Otherwise, load 'em
  up. If I understand MPS correctly, names are required.
*/
  if (nameDiscipline != 0)
  { for (int i = 0 ; i < m ; i++)
    { rowNames_[i] = mps.rowName(i) ; }
    rowNames_.resize(m) ;
    rowNamesNoHoles_ = true ;
    for (int j = 0 ; j < m ; j++)
    { colNames_[j] = mps.columnName(j) ; }
    colNames_.resize(n) ;
    colNamesNoHoles_ = true ; }
/*
  Free the name information, if requested, and we're done.
*/
  if (release == true)
  { mps.releaseRowNames() ;
    mps.releaseColumnNames() ; }

  return ; }


/*
  Install the name information from a CoinModel object.
*/
void OsiSolverInterface::setRowColNames (CoinModel &mod)

{ int nameDiscipline,m,n ;
/*
  Whatever happens, we're about to clean out the current name vectors. Decide
  on an appropriate size and call reallocRowColNames to adjust capacity.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
  if (nameDiscipline == 0)
  { m = 0 ;
    n = 0 ; }
  else
  { m = mod.rowNames()->numberItems() ;
    n = mod.columnNames()->numberItems() ; }
  reallocRowColNames(rowNames_,m,colNames_,n) ;
/*
  If name discipline is `no names', we're done already. Otherwise, load 'em
  up. As best I can see, there's no guarantee that we'll have names for all
  rows and columns, so we need to pay attention.
*/
  if (nameDiscipline != 0)
  { int maxRowNdx, maxColNdx ;
    bool noHoles = true ;
    const char *const *names = mod.rowNames()->names() ;
    for (int i = 0 ; i < m ; i++)
    { std::string nme = names[i] ;
      if (nme.length() == 0)
      { if (nameDiscipline == 2)
	{ nme = dfltRowColName('r',i) ; }
	else
	{ noHoles = false ; } }
      if (nme.length() > 0)
      { maxRowNdx = i ; }
      rowNames_[i] = nme ; }
    rowNames_.resize(maxRowNdx+1) ;
    rowNamesNoHoles_ = noHoles ;
    noHoles = true ;
    names = mod.columnNames()->names() ;
    for (int j = 0 ; j < m ; j++)
    { std::string nme = names[j] ;
      if (nme.length() == 0)
      { if (nameDiscipline == 2)
	{ nme = dfltRowColName('c',j) ; }
	else
	{ noHoles = false ; } }
      if (nme.length() > 0)
      { maxColNdx = j ; }
      colNames_[j] = nme ; }
    colNames_.resize(maxColNdx+1) ;
    colNamesNoHoles_ = noHoles ; }
/*
  And we're done.
*/
  return ; }



/*
  Install the name information from a CoinLpIO object. Nearly identical to the
  previous routine, but we start from a different object.
*/
void OsiSolverInterface::setRowColNames (CoinLpIO &mod)

{ int nameDiscipline,m,n ;
/*
  Whatever happens, we're about to clean out the current name vectors. Decide
  on an appropriate size and call reallocRowColNames to adjust capacity.
*/
  (void) getIntParam(OsiNameDiscipline,nameDiscipline) ;
  if (nameDiscipline == 0)
  { m = 0 ;
    n = 0 ; }
  else
  { m = mod.getNumRows() ;
    n = mod.getNumCols() ; }
  reallocRowColNames(rowNames_,m,colNames_,n) ;
/*
  If name discipline is `no names', we're done already. Otherwise, load 'em
  up. I have no idea whether we can guarantee valid names for all rows and
  columns, so we need to pay attention.
*/
  if (nameDiscipline != 0)
  { int maxRowNdx, maxColNdx ;
    bool noHoles = true ;
    const char *const *names = mod.getRowNames() ;
    for (int i = 0 ; i < m ; i++)
    { std::string nme = names[i] ;
      if (nme.length() == 0)
      { if (nameDiscipline == 2)
	{ nme = dfltRowColName('r',i) ; }
	else
	{ noHoles = false ; } }
      if (nme.length() > 0)
      { maxRowNdx = i ; }
      rowNames_[i] = nme ; }
    rowNames_.resize(maxRowNdx+1) ;
    rowNamesNoHoles_ = noHoles ;
    noHoles = true ;
    names = mod.getColNames() ;
    for (int j = 0 ; j < m ; j++)
    { std::string nme = names[j] ;
      if (nme.length() == 0)
      { if (nameDiscipline == 2)
	{ nme = dfltRowColName('c',j) ; }
	else
	{ noHoles = false ; } }
      if (nme.length() > 0)
      { maxColNdx = j ; }
      colNames_[j] = nme ; }
    colNames_.resize(maxColNdx+1) ;
    colNamesNoHoles_ = noHoles ; }
/*
  And we're done.
*/
  return ; }

#endif


More information about the Osi mailing list