[Ipopt] ipopt scilab crash
Edson Valle
edsoncv at enq.ufrgs.br
Wed Mar 7 08:55:59 EST 2012
Hello list users
I'm having some problems with 3.8.3 version of Ipopt. In fact I'm
using the scilab ipopt interface (I'm also sending this message to the
interface developers).
The problem starts at the very beginning of the optimization, first
iteration, and dumps a seg fault. The first and second derivatives are
OK. The problem itself is simple, quadratic obj function, 10
constraints, 4 linear and 6 linear, 22 nnz in the Gradiants and a
constant hessian.
I tried the latest version of Ipopt but could not compile the
interface with scilab, since the MPI-Mumps bug throws a link error.
The dump is very long, so I filtered it a little.
The options I selected:
"derivative_test","second-order");
"tol",1e-8);
"acceptable_tol",1e-8);
"mu_strategy","monotone");
"journal_level",7);
"hessian_approximation","exact");
The crash dump :
List of options:
Name Value # times used
acceptable_tol = 1e-08 1
derivative_test = second-order 1
hessian_approximation = limited-memory 4
mu_strategy = monotone 2
option_file_name = ipopt.opt 1
replace_bounds = no 1
tol = 1e-08 2
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Common Public License (CPL).
For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************
NOTE: You are using Ipopt by default with the MUMPS linear solver.
Other linear solvers might be more efficient (see Ipopt documentation).
This is Ipopt version 3.8.3, running with linear solver mumps.
Starting derivative checker for first derivatives.
Starting derivative checker for second derivatives.
No errors detected by derivative checker.
Number of nonzeros in equality constraint Jacobian...: 10
Number of nonzeros in inequality constraint Jacobian.: 12
Number of nonzeros in Lagrangian Hessian.............: 0
Hessian approximation will be done in smaller space of dimension 6
(instead of 7)
Scaling parameter for objective function = 1.000000e+00
Initial values of x sufficiently inside the bounds.
Initial values of s sufficiently inside the bounds.
Calling MUMPS-1 for symbolic factorization at cpu time 0.868
(wall 0.007).
Done with MUMPS-1 for symbolic factorization at cpu time 0.868
(wall 0.008).
MUMPS used permuting_scaling 5 and pivot_order 2.
scaling will be -2.
Calling MUMPS-2 for numerical factorization at cpu time 0.872
(wall 0.008).
Done with MUMPS-2 for numerical factorization at cpu time 0.872
(wall 0.008).
Number of doubles for MUMPS to hold factorization (INFO(9)) = 73
Number of integers for MUMPS to hold factorization (INFO(10)) = 360
Calling MUMPS-3 for solve at cpu time 0.872 (wall 0.008).
Done with MUMPS-3 for solve at cpu time 0.872 (wall 0.008).
Factorization successful.
Least square estimates max(y_c) = 0.000000e+00, max(y_d) = 1.428571e-01
Total number of variables............................: 7
variables with only lower bounds: 0
variables with lower and upper bounds: 7
variables with only upper bounds: 0
Total number of equality constraints.................: 4
Total number of inequality constraints...............: 6
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 6
inequality constraints with only upper bounds: 0
Convergence Check:
overall_error = 1.0000010100000000e+06 IpData().tol() =
1.0000000000000000e-08
dual_inf = 1.4285714285714302e-01 dual_inf_tol_ =
1.0000000000000000e+00
constr_viol = 2.8099999999999952e+00 constr_viol_tol_ =
1.0000000000000000e-04
compl_inf = 1.0000010100000000e+06 compl_inf_tol_ =
1.0000000000000000e-04
obj val update iter = 0
Acceptable Check:
overall_error = 1.0000010100000000e+06 acceptable_tol_
= 1.0000000000000000e-08
dual_inf = 1.4285714285714302e-01 acceptable_dual_inf_tol_
= 1.0000000000000000e+10
constr_viol = 2.8099999999999952e+00
acceptable_constr_viol_tol_ = 1.0000000000000000e-02
compl_inf = 1.0000010100000000e+06 acceptable_compl_inf_tol_
= 1.0000000000000000e-02
curr_obj_val_ = 1.0000000000000000e+00 last_obj_val
= -1.0000000000000001e+50
fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =
1.0000000000000001e+50 acceptable_obj_change_tol_ =
1.0000000000000000e+20
test iter = 0
**************************************************
*** Update HessianMatrix for Iteration 0:
**************************************************
Limited-Memory approximation started; store data at current iterate.
**************************************************
*** Summary of Iteration: 0:
**************************************************
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du
alpha_pr ls
0 1.0000000e+00 2.81e+00 1.43e-01 -1.0 0.00e+00 - 0.00e+00
0.00e+00 0 y
**************************************************
*** Beginning Iteration 0 from the following point:
**************************************************
Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01
||curr_x||_inf = 1.0191000000000000e+02
||curr_s||_inf = 1.0000000000000000e+00
||curr_y_c||_inf = 0.0000000000000000e+00
||curr_y_d||_inf = 1.4285714285714285e-01
||curr_z_L||_inf = 1.0000000000000000e+00
||curr_z_U||_inf = 1.0000000000000000e+00
||curr_v_L||_inf = 1.0000000000000000e+00
||curr_v_U||_inf = 1.0000000000000000e+00
No search direction has been computed yet.
***Current NLP Values for Iteration 0:
(scaled) (unscaled)
Objective...............: 1.0000000000000000e+00 1.0000000000000000e+00
Dual infeasibility......: 1.4285714285714302e-01 1.4285714285714302e-01
Constraint violation....: 2.8099999999999952e+00 2.8099999999999952e+00
Complementarity.........: 1.0000010100000000e+06 1.0000010100000000e+06
Overall NLP error.......: 1.0000010100000000e+06 1.0000010100000000e+06
**************************************************
*** Update Barrier Parameter for Iteration 0:
**************************************************
Optimality Error for Barrier Sub-problem = 1.000001e+06
Barrier Parameter: 1.000000e-01
**************************************************
*** Solving the Primal Dual System for Iteration 0:
**************************************************
Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
delta_c=0.000000e+00 delta_d=0.000000e+00
Calling MUMPS-2 for numerical factorization at cpu time 0.872
(wall 0.010).
Done with MUMPS-2 for numerical factorization at cpu time 0.872
(wall 0.010).
Number of doubles for MUMPS to hold factorization (INFO(9)) = 73
Number of integers for MUMPS to hold factorization (INFO(10)) = 360
Calling MUMPS-3 for solve at cpu time 0.872 (wall 0.010).
Done with MUMPS-3 for solve at cpu time 0.872 (wall 0.010).
Factorization successful.
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
delta_c=0.000000e+00 delta_d=0.000000e+00
max-norm resid_x 5.551115e-16
max-norm resid_s 0.000000e+00
max-norm resid_c 4.440892e-16
max-norm resid_d 0.000000e+00
max-norm resid_zL 1.421085e-14
max-norm resid_zU 7.275958e-12
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.00e+06 nrm_sol = 2.00e+00 nrm_resid = 7.28e-12
residual_ratio = 7.275936e-18
Calling MUMPS-3 for solve at cpu time 0.872 (wall 0.010).
Done with MUMPS-3 for solve at cpu time 0.872 (wall 0.010).
Factorization successful.
*** glibc detected *** /usr/local/scilab-5.3.0/bin/scilab-bin:
munmap_chunk(): invalid pointer: 0x09b73818 ***
======= Backtrace: =========
/lib/tls/i686/cmov/libc.so.6(+0x6b591)[0xb4fea591]
/lib/tls/i686/cmov/libc.so.6(+0x6c80e)[0xb4feb80e]
/usr/local/scilab-5.3.0/lib/thirdparty/libstdc++.so.6(_ZdlPv+0x21)[0xb4f44cc1]
/usr/local/scilab-5.3.0/lib/thirdparty/libstdc++.so.6(_ZdaPv+0x1d)[0xb4f44d1d]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZNK5Ipopt16DenseVectorSpace19FreeInternalStorageEPd+0x23)[0x97912abb]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt11DenseVector7SetImplEd+0x69)[0x9790ed87]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt6Vector3SetEd+0x37)[0x977e06d9]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZNK5Ipopt15ExpansionMatrix14MultVectorImplEdRKNS_6VectorEdRS1_+0x5f)[0x9791dbb7]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZNK5Ipopt6Matrix10MultVectorEdRKNS_6VectorEdRS1_+0x4c)[0x9783ea00]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZNK5Ipopt22LowRankUpdateSymMatrix14MultVectorImplEdRKNS_6VectorEdRS1_+0x3a6)[0x97918f32]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZNK5Ipopt6Matrix10MultVectorEdRKNS_6VectorEdRS1_+0x4c)[0x9783ea00]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt17PDFullSpaceSolver16ComputeResidualsERKNS_9SymMatrixERKNS_6MatrixES6_S6_S6_S6_S6_RKNS_6VectorES9_S9_S9_S9_S9_S9_S9_S9_S9_ddRKNS_14IteratesVectorESC_RSA_+0x10c)[0x97a2822a]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt17PDFullSpaceSolver5SolveEddRKNS_14IteratesVectorERS1_bb+0x1296)[0x97a25826]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt21PDSearchDirCalculator22ComputeSearchDirectionEv+0x1070)[0x9786408c]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt14IpoptAlgorithm22ComputeSearchDirectionEv+0xda)[0x978a81ca]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt14IpoptAlgorithm8OptimizeEb+0x335)[0x978a736f]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt16IpoptApplication13call_optimizeEv+0x713)[0x977dc97b]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt16IpoptApplication11OptimizeNLPERKNS_8SmartPtrINS_3NLPEEERNS1_INS_16AlgorithmBuilderEEE+0x317)[0x977db9c7]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt16IpoptApplication11OptimizeNLPERKNS_8SmartPtrINS_3NLPEEE+0x47)[0x977db67d]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(_ZN5Ipopt16IpoptApplication12OptimizeTNLPERKNS_8SmartPtrINS_4TNLPEEE+0xe5)[0x977db195]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(sciipopt+0x26f6)[0x977b75f4]
/usr/local/scilab-5.3.0/lib/scilab/libmx.so.5(+0x8f0f)[0xb6e46f0f]
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp//libsci_ipopt.so(libsci_ipopt_+0x116)[0x977cf5a6]
/usr/local/scilab-5.3.0/lib/scilab/libscidynamic_link.so.5(userlk_+0xeb)[0xb696809b]
/usr/local/scilab-5.3.0/lib/scilab/libscicore.so.5(callinterf_+0x100)[0xb75f3190]
/usr/local/scilab-5.3.0/lib/scilab/libscicore.so.5(scirun_+0x187)[0xb7600347]
/usr/local/scilab-5.3.0/lib/scilab/libscicore.so.5(realmain+0x132)[0xb75ed332]
/usr/local/scilab-5.3.0/bin/scilab-bin[0x804925e]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe6)[0xb4f95bd6]
/usr/local/scilab-5.3.0/bin/scilab-bin[0x8048e41]
======= Memory map: ========
08048000-0804a000 r-xp 00000000 08:08 114468
/usr/local/scilab-5.3.0/bin/scilab-bin
0804a000-0804b000 r--p 00001000 08:08 114468
/usr/local/scilab-5.3.0/bin/scilab-bin
0804b000-0804c000 rw-p 00002000 08:08 114468
/usr/local/scilab-5.3.0/bin/scilab-bin
0988d000-09b97000 rw-p 00000000 00:00 0 [heap]
976e8000-97bc7000 r-xp 00000000 08:06 5795953
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp/libsci_ipopt.so
97bc7000-97bcb000 r--p 004de000 08:06 5795953
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp/libsci_ipopt.so
97bcb000-97bd1000 rw-p 004e2000 08:06 5795953
/home/edsoncv/softs/sci-ipopt/sci_gateway/cpp/libsci_ipopt.so
...
9b3d5000-9b3dc000 r--s 00111000 08:08 205359
/usr/local/scilab-5.3.0/thirdparty/java/lib/resources.jar
9b3dc000-9b405000 r--p 00000000 08:05 4628532
/usr/share/locale-langpack/pt/LC_MESSAGES/gtk20-properties.mo
9b405000-9b40f000 r-xp 00000000 08:05 1138802 /lib/libudev.so.0.6.1
9b40f000-9b410000 r--p 00009000 08:05 1138802 /lib/libudev.so.0.6.1
9b410000-9b411000 rw-p 0000a000 08:05 1138802 /lib/libudev.so.0.6.1
9b411000-9b435000 r-xp 00000000 08:05 4317956
/usr/lib/gio/modules/libgvfsdbus.so
9b435000-9b436000 r--p 00023000 08:05 4317956
/usr/lib/gio/modules/libgvfsdbus.so
9b436000-9b437000 rw-p 00024000 08:05 4317956
/usr/lib/gio/modules/libgvfsdbus.so
Aborted
Edson Valle
edsoncv at gmail.com
edsoncv at enq.ufrgs.br
More information about the Ipopt
mailing list