[Ipopt] Slow convergence

Praveen C 3me5aqb02 at sneakemail.com
Mon Oct 12 12:10:45 EDT 2009


I have a problem with one non-linear constraint. I have attached the output of an optimization. The constraint is very easily satisfied from the first iteration itself. But ipopt seems to converge very slowly for this problem. In fact I do not get convergence in 30 iterations and about 100 function evaluations. Is it possible to find out what is causing this slow convergence ? 

Thanks
praveen

List of user-set options:

                                    Name   Value                used
                          acceptable_tol = 0.01                  yes
                           compl_inf_tol = 0.01                  yes
                         constr_viol_tol = 0.01                  yes
                            dual_inf_tol = 0.01                  yes
                   hessian_approximation = limited-memory        yes
              limited_memory_max_history = 6                     yes
                                max_iter = 30                    yes
                             mu_strategy = monotone              yes
                             output_file = ipopt.out             yes
                             print_level = 5                     yes
                      print_user_options = yes                   yes
                                     tol = 0.01                  yes

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Common Public License (CPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.7.0, running with linear solver ma27.

Number of nonzeros in equality constraint Jacobian...:       10
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:        0

Total number of variables............................:       10
                     variables with only lower bounds:        0
                variables with lower and upper bounds:       10
                     variables with only upper bounds:        0
Total number of equality constraints.................:        1
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  1.0000000e+00 0.00e+00 2.92e+00  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
Warning: Cutting back alpha due to evaluation error
   1  9.3218634e-01 4.83e-14 9.43e-01  -1.0 7.11e-02    -  1.00e+00 8.70e-02f  4
   2  9.2273589e-01 1.04e-13 4.19e+00  -1.7 1.42e-02    -  1.00e+00 1.25e-01f  4
   3  9.2166788e-01 5.53e-13 2.00e+00  -1.7 1.81e-03    -  1.00e+00 1.00e+00f  1
   4  9.2109032e-01 9.21e-13 2.13e+00  -1.7 1.40e-03    -  1.00e+00 5.00e-01f  2
   5  9.1805379e-01 2.65e-12 6.82e-01  -1.7 5.32e-04    -  1.00e+00 1.00e+00f  1
   6  9.1754089e-01 6.65e-12 6.74e-01  -1.7 2.84e-04    -  1.00e+00 1.00e+00f  1
   7  9.1636554e-01 6.59e-12 1.06e+00  -1.7 2.73e-02    -  1.00e+00 3.12e-02f  6
   8  9.1085596e-01 1.97e-11 1.61e+00  -1.7 4.81e-03    -  1.00e+00 1.00e+00f  1
   9  9.0634559e-01 5.47e-11 2.32e+00  -1.7 5.73e-03    -  1.00e+00 1.00e+00f  1
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
  10  9.0338670e-01 1.48e-10 7.97e-01  -1.7 3.77e-03    -  1.00e+00 1.00e+00f  1
  11  9.0299679e-01 9.07e-12 2.23e+00  -1.7 3.42e-03    -  1.00e+00 2.50e-01f  3
  12  9.0078352e-01 4.21e-12 5.74e-01  -1.7 4.11e-03    -  1.00e+00 5.00e-01f  2
  13  9.0048649e-01 2.95e-12 2.81e+00  -1.7 5.07e-03    -  1.00e+00 6.25e-02f  5
  14  8.9893907e-01 4.81e-12 1.21e+00  -1.7 1.86e-03    -  1.00e+00 1.00e+00f  1
  15  8.9909228e-01 3.19e-12 1.26e+00  -1.7 1.22e-03    -  1.00e+00 2.50e-01f  3
  16  8.9912056e-01 4.68e-12 7.54e-01  -1.7 6.43e-04    -  1.00e+00 5.00e-01f  2
  17  8.9953878e-01 5.25e-12 2.71e-01  -1.7 1.29e-03    -  1.00e+00 5.00e-01f  2
  18  8.9957048e-01 1.16e-12 4.83e-01  -1.7 2.87e-03    -  1.00e+00 6.25e-02f  5
  19  8.9950272e-01 2.88e-12 5.58e-01  -1.7 6.06e-04    -  1.00e+00 2.50e-01f  3
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
  20  8.9943346e-01 1.11e-11 5.58e-01  -1.7 3.95e-04    -  1.00e+00 1.00e+00f  1
  21  8.9943889e-01 1.11e-11 2.31e-01  -1.7 1.83e-03    -  1.00e+00 7.81e-03f  8
  22  8.9951131e-01 1.46e-11 3.59e-01  -1.7 6.37e-04    -  1.00e+00 5.00e-01f  2
  23  8.9951224e-01 9.32e-12 5.61e-01  -1.7 9.48e-04    -  1.00e+00 6.25e-02f  5
  24  8.9942348e-01 7.51e-12 5.12e-01  -1.7 7.24e-04    -  1.00e+00 5.00e-01f  2
  25  8.9941830e-01 6.04e-12 3.69e-01  -1.7 4.64e-04    -  1.00e+00 6.25e-02f  5
  26  8.9937708e-01 1.49e-11 1.73e-01  -1.7 1.49e-04    -  1.00e+00 1.00e+00f  1
  27  8.9830206e-01 4.05e-11 1.49e+00  -2.5 2.12e-03    -  1.00e+00 1.00e+00f  1
  28  8.9801104e-01 3.49e-11 2.44e+00  -2.5 4.08e-02    -  1.00e+00 2.83e-02f  6
  29  8.9535303e-01 9.35e-11 1.63e+00  -2.5 7.12e-03    -  1.00e+00 1.00e+00f  1
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
  30  8.9523790e-01 5.23e-11 1.63e+00  -2.5 1.46e-02    -  1.00e+00 1.25e-01f  4

Number of Iterations....: 30

                                   (scaled)                 (unscaled)
Objective...............:   8.9523789616951255e-01    8.9523789616951255e-01
Dual infeasibility......:   1.6296134728676277e+00    1.6296134728676277e+00
Constraint violation....:   5.2255866300754406e-11    5.2255866300754406e-11
Complementarity.........:   3.5541737998279169e-03    3.5541737998279169e-03
Overall NLP error.......:   1.6296134728676277e+00    1.6296134728676277e+00


Number of objective function evaluations             = 103
Number of objective gradient evaluations             = 31
Number of equality constraint evaluations            = 103
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 31
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 0
Total CPU secs in IPOPT (w/o function evaluations)   =      0.103
Total CPU secs in NLP function evaluations           =      0.043

EXIT: Maximum Number of Iterations Exceeded.



More information about the Ipopt mailing list