<div dir="ltr"><div>Attendum: Did anyone else observe that ipopt v 3.12.3 in Matlab even with the options</div><div><br></div><div>options.ipopt.mu_strategy = 'adaptive';+</div><div>options.ipopt.mu_max = 1e-1</div><div><br></div><div>uses values for mu that are 10^0.3 ?</div><div>And, indeed, this spoils my overall convergence because for small mu-s it occurs that Ipopt pointlessly improves performance whilst searching in a completely infeasible area.</div><div><br></div><div>Is there an option to enforce a maximum value for mu without any exception that Ipopt can exploit to still choose it larger?</div><div><br></div><div>Kind regards</div><div>Martin</div></div><div class="gmail_extra"><br><div class="gmail_quote">2017-02-06 10:08 GMT+00:00 Martin Neuenhofen <span dir="ltr"><<a href="mailto:martinneuenhofen@googlemail.com" target="_blank">martinneuenhofen@googlemail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Hi all,</div><div><br></div><div>I am using ipopt with the option.ipopt.mu_strategy = 'monotone' but from by iteration count I observe that lg(mu) does increase: It starts at -1 and after some iterations becomes -0.0 . Can one enforce a truly monotone behaviour? Setting the upper limit to -1 works for this case but may it happen that the solver first decreases in a sequence like -1, -2, -3 and then comes back to -2 or can this only happen because the solver tries to find a suitable initial mu?</div><div><br></div><div>I am thankful for Professor Miller's feedback to my questions on Ipopt's convergence measures. It would be of great help for me if someone could come back to my latter questions.</div><div><br></div><div>Kind regards</div><span class="HOEnZb"><font color="#888888"><div>Martin</div></font></span></div>
</blockquote></div><br></div>