<div dir="ltr"><div>
<div>All,<br>
<br>
</div>
I am using the IPOPT 3.11.8 Matlab mex file from 08-Jun-2014. Without
getting into too much detail, I am solving an optimal control problem
via direct collocation to an NLP. The size of the NLP varies due to the
fact that I am performing mesh refinement to
obtain a solution that meets a specified mesh refinement accuracy
tolerance. <br>
<br>
I am currently performing a study where I am doing computation time
comparisons for different mesh refinement accuracy tolerances and am
finding some strange results. In particular, I am not finding a good
correlation between the CPU time required to solve
the problem and the mesh size or the number of mesh refinement
iterations (that is, the number of times the NLP must be solved). As a
result, it is very difficult for me to compare different mesh refinement
algorithms because a larger size NLP does not necessarily
lead to a larger CPU time. In fact, in many instances the CPU time
could be much less even though the number of meshes or the size of the
NLP required to meet the accuracy tolerance is much greater. From
everything I know I am solving a problem where the
NLP variables and constraints are O(1) (because I have scaled the
problem appropriately to make sure that is the case).
<br>
<br>
</div>
I realize that my questions are somewhat vague, but the behavior I am
getting just does not make sense to me. I am grateful if somebody could
help me figure out how I might arrive at more consistent results by
setting any particular parameters in IPOPT itself.
<br clear="all"><br>-- <br><div class="gmail_signature"><div dir="ltr">Anil V. Rao, PhD<br>
Associate Professor<br>
Department of Mechanical and Aerospace Engineering<br>
University of Florida<br>
Gainesville, FL 32611-6250<br>Tel: (352) 672-1529<br>E-mail: <a href="mailto:anilvrao@gmail.com" target="_blank">anilvrao@gmail.com</a><br></div></div>
</div>