<div dir="ltr"><div>
<div>All,<br>
<br>
</div>
I am using the IPOPT 3.11.8 Matlab mex file from 08-Jun-2014.  Without 
getting into too much detail, I am solving an optimal control problem 
via direct collocation to an NLP.  The size of the NLP varies due to the
 fact that I am performing mesh refinement to
 obtain a solution that meets a specified mesh refinement accuracy 
tolerance.  <br>
<br>
I am currently performing a study where I am doing computation time 
comparisons for different mesh refinement accuracy tolerances and am 
finding some strange results. In particular, I am not finding a good 
correlation between the CPU time required to solve
 the problem and the mesh size or the number of mesh refinement 
iterations (that is, the number of times the NLP must be solved).  As a 
result, it is very difficult for me to compare different mesh refinement
 algorithms because a larger size NLP does not necessarily
 lead to a larger CPU time.  In fact, in many instances the CPU time 
could be much less even though the number of meshes or the size of the 
NLP required to meet the accuracy tolerance is much greater.   From 
everything I know I am solving a problem where the
 NLP variables and constraints are O(1) (because I have scaled the 
problem appropriately to make sure that is the case). 
<br>
<br>
</div>
I realize that my questions are somewhat vague, but the behavior I am 
getting just does not make sense to me.  I am grateful if somebody could
 help me figure out how I might arrive at more consistent results by 
setting any particular parameters in IPOPT itself. 
<br clear="all"><br>-- <br><div class="gmail_signature"><div dir="ltr">Anil V. Rao, PhD<br>
Associate Professor<br>
Department of Mechanical and Aerospace Engineering<br>
University of Florida<br>
Gainesville, FL 32611-6250<br>Tel:  (352) 672-1529<br>E-mail:  <a href="mailto:anilvrao@gmail.com" target="_blank">anilvrao@gmail.com</a><br></div></div>
</div>