<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html;charset=ISO-8859-1" http-equiv="Content-Type">
<title></title>
</head>
<body bgcolor="#ffffff" text="#000000">
Hi All,<br>
<br>
I have a question on the output of IPOPT if using the CUTEr<br>
interface (ie, SIF as the input model file). From the output,<br>
I only can read the optimal objective function value, while I can't <br>
find the optimal variable values from the output list. As a matter<br>
of fact, both the optimal objective function value and the <br>
optimal variable values are output when I run LANCELOT<br>
(also using SIF as the input file). Besides, IPOPT + AMPL<br>
also can output both optimal values. Below I give the output<br>
results from IPOPT+CUTEr and LANCELOT, respectively,<br>
if I input the same HS65.SIF.<br>
<br>
<br>
<b>Results from IPOPT+CUTEr:</b><br>
------------------------------------------------------------------------------<br>
[lihong@frosty]tmp> sdipopt --blas none HS65.SIF<br>
<br>
Problem name: HS65 <br>
<br>
Double precision version will be formed. <br>
<br>
The objective function uses 3 nonlinear groups<br>
<br>
There is 1 nonlinear inequality constraint <br>
<br>
There are 3 variables bounded from below and above <br>
<br>
ld: warning: symbol `evals_' has differing sizes:<br>
(file
/homes/lihong/cvs/cuter/CUTEr.large.sun.sol.g77/double/bin/ipoptma<br>
.o value=0x8; file /homes/lihong/cvs/COIN/Ipopt/lib/libipopt.a(ipopt.o)
value=0x<br>
c);<br>
/homes/lihong/cvs/COIN/Ipopt/lib/libipopt.a(ipopt.o) definition
taken<br>
******************************************************************************<br>
This program contains IPOPT, a program for large-scale nonlinear
optimization.<br>
IPOPT is released as open source under the Common Public License
(CPL).<br>
For more information visit <a class="moz-txt-link-abbreviated" href="http://www.coin-or.org/Ipopt">www.coin-or.org/Ipopt</a><br>
******************************************************************************<br>
<br>
Number of variables : 4<br>
of which are fixed : 0<br>
Number of constraints : 1<br>
Number of lower bounds : 4<br>
Number of upper bounds : 3<br>
Number of nonzeros in Jacobian: 4<br>
Number of nonzeros in Hessian : 4<br>
<br>
ITER ERR MU ||C|| ||D|| ALFA(X) #LS
F Regu<br>
0 .200E+02d .100E+00 .830E+01 .000E+00 .000E+00 0 0.11549921E+03
.000E+00<br>
1 .999E+01d .100E+00 .752E+01 .666E+00 .930E-01h 1 0.11693020E+03
.100E+03<br>
2 .100E+02d .100E+00 .746E+01 .256E+01 .759E-02h 1 0.11698136E+03
.333E+02<br>
3 .208E+03d .100E+00 .506E+01 .778E+01 .100E+01f 1 0.99509892E+02
.111E+02<br>
4 .733E+02d .100E+00 .202E+01 .196E+01 .100E+01h 1 0.10934095E+03
.296E+02<br>
5 .743E+02d .100E+00 .132E+01 .115E+01 .100E+01h 1 0.12019884E+03
.790E+02<br>
6 .202E+02d .100E+00 .653E+00 .886E+00 .100E+01f 1 0.11130700E+03
.000E+00<br>
7 .658E+02p .100E+00 .658E+02 .563E+02 .999E+00f 1 0.57224133E+01
.000E+00<br>
8 .995E+01p .100E+00 .995E+01 .668E+02 .932E+00f 1 0.10383396E+01
.000E+00<br>
9 .154E+01p .100E+00 .154E+01 .135E+01 .100E+01h 1 0.16139967E+01
.000E+00<br>
<br>
ITER ERR MU ||C|| ||D|| ALFA(X) #LS
F Regu<br>
10 .284E+00p .100E+00 .284E+00 .129E+01 .100E+01h 1 0.10375737E+01
.000E+00<br>
11 .352E-01p .200E-01 .352E-01 .132E+01 .894E+00h 1 0.95303357E+00
.000E+00<br>
12 .269E-02c .283E-02 .168E-02 .476E-01 .100E+01h 1 0.95638608E+00
.000E+00<br>
13 .612E-04c .150E-03 .203E-04 .348E-01 .100E+01h 1 0.95366453E+00
.000E+00<br>
14 .880E-07c .184E-05 .256E-07 .166E-02 .100E+01h 1 0.95353066E+00
.000E+00<br>
15 .688E-11c .251E-08 .269E-11 .221E-04 .100E+01h 1 0.95352886E+00
.000E+00<br>
<br>
Number of iterations taken ............. 15<br>
Final value of objective function is.... 0.9535288576748209E+00<br>
<br>
Errors at final point (scaled) (unscaled)<br>
Final maximal constraint violation is... 0.268651E-11 0.268651E-11<br>
Final value for dual infeasibility is... 0.574804E-12 0.574804E-12<br>
Final value of complementarity error is. 0.251278E-08 0.251278E-08<br>
<br>
The objective function was evaluated 16 times.<br>
The constraints were evaluated 16 times.<br>
<br>
EXIT: OPTIMAL SOLUTION FOUND<br>
<br>
CPU seconds spent in IPOPT and function evaluations = 0.0000<br>
<br>
************************ CUTEr statistics ************************<br>
Code used : IPOPT<br>
Problem : HS65 <br>
# variables = 3<br>
# constraints = 1<br>
# objective functions = 0.3300000E+02<br>
# objective gradients = 0.1700000E+02<br>
# objective Hessians = 0.1600000E+02<br>
# Hessian-vector prdct = 0.0000000E+00<br>
# constraints functions = 0.3400000E+02<br>
# constraints gradients = 0.1700000E+02<br>
# constraints Hessians = 0.1600000E+02<br>
Exit code = 0<br>
<b>Final f = 0.9535289E+00</b><br>
Set up time = 0.00 seconds<br>
Solve time = 0.03 seconds<br>
******************************************************************<br>
<br>
<br>
<b>Results from LANCELOT:</b><br>
------------------------------------------------------------------------------<br>
[lihong@frosty]sampleproblems> sdlan HS65<br>
<br>
Problem name: HS65 <br>
<br>
Double precision version will be formed. <br>
<br>
The objective function uses 3 nonlinear groups<br>
<br>
There is 1 nonlinear inequality constraint <br>
<br>
There are 3 variables bounded from below and above <br>
There is 1 slack variable <br>
<br>
<b>objective function value = 9.53529015445393E-01</b><br>
<br>
X1 3.65046164957023E+00<br>
X2 3.65046164897452E+00<br>
X3 4.62041746528368E+00<br>
C1 0.00000000000000E+00<br>
<br>
<br>
<br>
Form the above, we may find the output objective<br>
function values from both IPOPT and LANCELOT<br>
converge. However, I hope I can also obtain the<br>
optimal variable values from IPOPT. I guess it is <br>
not a big deal. I maybe missed some switches. Does<br>
anybody have ideas and give me any hints? thanks.<br>
<br>
Best regards,<br>
<br>
Lihong<br>
<br>
</body>
</html>