FLOPCH+
An algebraic modeling language embedded in

C++

Tim Helge Hultberg

EUMETSAT, DE-64295 Darmstadt tim.hultberg@eumetsat.int

Summary. FLOPC++ is an open source algebraic modeling language implemented
as a C++ class library. It allows linear optimization problems to be modeled in
a declarative style, similar to algebraic modeling languages, such as GAMS and
AMPL, within a C4++ program. The project is part of COmputational INfrastruc-
ture for Operations Research (COIN-OR) and uses its Open Solver Interface (OSI)
to achieve solver independence.

1 Introduction

Algebraic modeling languages are important tools in Operations Research,
their benefits are well known [2]: They allow a model representation which is
readable by both humans and computers, using a syntax close to the notation
used by most modelers. They automate the generation of model instances,
freeing the modeler from the burden of generating the low level matrix for-
mat needed by the solver. In summary, they make implementation and main-
tenence of optimization models much easier.

However, traditional algebraic modeling languages do also have major
weaknesses:

Limited flexibility for integration with other software components
Limited procedural support for algorithm development

Limited model/program structuring facilities

Limited extendibility

In order to mitigate these weaknesses, most algebraic modeling languages
have incorporated procedural constructs, which allow the construction of al-
gorithms around the optimization models. It has also become common to
provide some sort of support for embedding the models in applications.

A natural alternative to extending the existing modeling languages is to
implement modeling abstractions within an existing general-purpose object-
oriented programming language, C++, in order to enable the “Formulation

2 Tim Hultberg

of Linear Optimization Problems in C+4++". This is what FLOPC++ is all
about.

The work on FLOPC++ began in year 2000 when the author had devel-
oped a production model for a Danish poultry butchery in GAMS and was
faced with the practical problems of integrating the model in a GUI for col-
lecting data and displaying the results. Discussing these problems with Sgren
Nielsen, he pointed me to his excellent paper [5], which was the main inspi-
ration for the start of the development of FLOPC++. [4]

The first versions of FLOPC++ used the CPLEX callable library as its
solver, but the need for supporting several independent solvers soon became
apparent. Luckily, the simultaneous appearance of the Osi (Open Solver Inter-
face) providing an abstract base class to a generic linear programming (LP)
solver, along with derived classes for specific solvers, made this an easy task.

The algebraic representation of a model convey structural information that
is hidden in the matrix representation required by the solver. Sometimes this
information can be used to develop specialized solution algorithms using a
general linear optimization solver for subproblems. Examples of such algo-
rithms include decomposition, column generation and model specific cutting
plane algorithms. The development of such algorithms is greatly facilitated by
working in an environment where the algebraic representation of the model
is available. This kind of algorithms can often be implemented in traditional
modeling languages, but the implementations are mostly hopelessly ineffi-
cient because problems are passed to the solver via file interfaces and most
importantly because slightly modified problems get regenerated from scratch.
FLOPC++ offers the possibility to modify problem instances and warm start
the solver from the last solution.

In Section 2 we give a brief introduction to the implementation of FLOPC++
without going into every aspect, before the conclusion in Section 3.

2 Implementation

Consider the following excerpt from the FLOPC++ model “aircraft.cpp” (the
full model is one of the examples in the model library which comes with the
distribution):

MP_set S(numS); // Sources

MP_set D(numD) ; // Destinations

MP_subset<2> Link(S,D); // Transp. links (subset of S*D)
MP_data DEMAND(D) ;

MP_data SUPPLY(S);

MP_variable x(Link);

MP_constraint supply(S);

MP_constraint demand(D);

FLOPC++ 3

supply(8) = sum(Link(S,D), x(Link)) <= SUPPLY(S);
demand (D) sum(Link(S,D), x(Link)) >= DEMAND(D);

We see that C++ classes are available to represent the basic algebraic
modeling constructs: index sets, parameters, variables and constraints. There
is also a class for representing dummy indices (MP_index), but since index sets
can also be used as dummy indices, they are not needed for this particular
model.

When the last statement is executed several data members of the MP _constraint
object supply get instantiated. The dummy index “S” corresponding to the
index set “S”, over which the constraint is defined, is stored (yes,”S” plays the
role of both index set and dummy index). The type of the constraint, >=, is
stored and the value of two objects, left and right, of the type MP_expression
get assigned.

The objects of the MP _expression class are symbolic representations of
linear expressions (including dummy indices) and are implemented as ref-
erence counted pointers to MP_expression_base. In general MP_expressions
are trees since the classes derived from MP_expression_base have one or
two pointers to MP _expression_base as members, except for the two Ter-
minalExpression classes Expression_constant and VariableRef. The complete
MP _expression_base class hierarchy is shown below.

flopc::MP_expression_base

flopc::Expression_mult | |f|opc::Exprwsion70perator| | flopc::Expression_sum | | flopc:: Terminal Expression
[f] [f]
flopc::Expression_minus | | flopc::Expression_plus | |f|opc::Expron_oonstant| | flopc::VariableRef

Fig. 1. MP_expression_base class hierarchy

The MP _expression trees are build by a number of small operator over-
loaded functions and constructors as for example:

MP_expression operator+(const MP_expression& el, const MP_expression& e2) {
return new Expression_plus(el, e2);

}
and

MP_expression::MP_expression(const Constant &c)
Handle<MP_expression_base*>(new Expression_constant(c)) {}

The symbolic representation can then subsequently be used for generating
the problem instances. In fact, it is this two step generation approach which
makes the truly declarative notation of FLOPC++ possible in contrast to
other modeling libraries such as Concert Technology from ILOG or LP Toolkit
from Euro-decision. With Concert Technology, for example, the last constraint
would be modeled as:

4 Tim Hultberg

for (IloInt d=0; d<numD; d++) {
IloExpr total(env);
for (IloInt s=0; s<numS; s++) {

total += x[s][d];

}
model.add(total >= DEMAND[d]);
total.end();

}

Back to FLOPC++. The generation of the coefficient matrix entries takes
place in the leaf nodes of the MP_expressions after informations (constant
multipliers and domain) have been passed recursively down in the tree and
combined from upper level nodes. When combining the domains, it is realized
that D*Link(S,D) is equal to Link(S,D) so the complexity of generating the
last constraint is of order |Link(S,D)| and not |D|*|Link(S,D)| as one might
expect from a naive implementation.

As the very final step the coeflicients matrix entries generated from the
individual leaf node TerminalExpressions are assembled, i.e. eventual repeated
entries are added.

3 Conclusion

FLOPC++ is available from the home-page https://projects.coin-or.
org/FlopC++, where detailed download and installation information can be
found.

The main goal of FLOPC++ is to be as robust, efficient and easy to
use for linear optimization as traditional algebraic modeling languages, such
as AMPL and GAMS, while remaining lightweight and reaping the inherent
benefits of being embedded in C++.

I hope to see FLOPC++ being increasingly used, for example for modeling
slice models [1] and stochastic programs [3], which are otherwise awkward to
formulate without extensions to the traditional modeling languages.

Acknowledgments

I would like to thank Philip Walton, Junction Solutions and JP Fasano, IBM
who recently implemented several valuable improvements to FLOPC++ (Mi-
crosoft Visual C++ compatibility, doxygen comments, use of GNU autotools
and full integration into Coin-Or, just to mention the most important) as well
as the several other people who have reported bugs and suggested improve-
ments over the last couple of years.

FLOPC++ 5

References

1. M. Ferris and M. Voelker. Slice models in general purpose modeling systems.
Technical report, Data Mining Institute Technical Report 00-10, Computer Sci-
ences Department, University of Wisconsin, Madison, 2000.

2. R. Fourer. Modeling languages versus matrix generators for linear programming.
ACM Transactions on Mathematical Software, 1983.

3. R. Fourer and L. Lopes. Stampl: A filtration-oriented modeling tool for stochas-
tic programming. Technical report, Technical report, Department of Industrial
Engineering and Management Sciences, Northwestern University, 2003.

4. T. Hultberg. Topics in computational linear optimization. PhD thesis, Depart-
ment of Mathematical Modeling, Technical University of Denmark, 2000.

5. S. Nielsen. A C++ class library for mathematical programming. In The impact
of emerging technologies on computer science and operations research. Kluwer,
1995.

